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UTILITY OF PHEASANT CALL COUNTS AND BROOD COUNTS
FOR MONITORING POPULATION DENSITY
AND PREDICTING HARVEST

Clifford G. Ricel

ABSTRACT.—Call counts and brood counts are frequently used to evaluate Ring-necked Pheasant (Phasianus colchicus)
populations and to forecast harvest. Given the variability commonly observed in these counts, I evaluated their utility in
performing these functions in the state of Washington. Pheasant harvest, call counts, and brood counts have all declined
in Washington State since 1982. Power for detecting trends in call counts was higher than for brood counts, but substantial
sampling was required to reliably detect even large changes in the short term {e.g., power = 0.9 for a 40% decline
between 2 years with 12 routes). Brood counts predicted harvest with greater precision than did call counts, but predic-
tions were meaningful only at the statewide scale {i.e., not for counties or major river basins). This was true for predict-
ing total harvest and relative harvest (high, medium, or low).

Key words: brood counts, call counts, crowing counts, harvest prediction, pheasant, population mondtoring, roadside

surveys, upland game.

Call counts and brood counts are 2 tech-
niques used by the Washington Department of
Fish and Wildlite (WDFW) for monitoring
Ring-necked Pheasant populations. The objec-
tives of these surveys are to monitor popula-
tion levels and to predict hunter harvest dur-
ing the following fall hunting season.

Previous papers on these techniques have
dealt primarily with refinements for minimiz-
ing variability and the influence of confound-
ing variables such as season, time of day, and
weather (e.g., Fisher er al. 1947, Kimball 1949,
Kozicky 1952, Klonglan 1955, Gates 1966,
Luukkonen et al. 1997). While some have ad-
vocated the use of call counts as an index of
population levels (Robertson 1958, Gates 1966,
Warner and David 1982, Snyder 1985, Rotella
and Ratti 1986), others have felt that these
counts were best used to document presence
(Anderson 1983). Statistical power for detect-
ing differences in call or brood counts has not
been addressed. Several authors reported high
correlations between field surveys and subse-
quent harvest levels (Suchy et al. 1991, and
several unpublished reports), but significant
correlations do not necessarily yield precise
predictions. To overcome this deficiency, I
examined the precision of predictions based
on past survey indices and harvest.

STUDY AREA AND METHODS
Trend Analysis

Call count and brood count transects were
conducted in the primary management zone
for pheasant in Washington: the Snake, Colum-
bia, and Yakima River basins (Fig. 1). The
Columbia and Yakima River basins were his-
torically almost entirely shrub-steppe habitat
(Johnson and O'Neil 2001). The Snake River
basin was historically primarily eastside (inte-
rior) grassland habitat, with some areas of her-
baceous wetlands and eastside (interior) ripar-
ian—wetlands habitat (Johnson and O'Neil
2001). Currently, all 3 basins are predomi-
nantly agriculture, pasture, and mixed envi-
rons habitat (Johnson and O’Neil 2001) con-
taining only fragments of the original habitats.

WDFW biologists subjectively selected the
locations of call and brood count routes to rep-
resent high-quality pheasant habitat. Call counts
were conducted along fixed transects on 1 or 2
days between 25 April and 15 May, from 50
minutes before sunrise to 10 minutes after sun-
rise. At 20 stations at 21.6-km (I-mile) inter-
vals, the observer recorded all pheasant calls
heard for a 2-minute period. Counts were not
conducted if wind speed exceeded about 8 km
- hr=1 (5 miles - hr—1), and stations were moved
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Fig. 1. Map of southeastern Washington showing counties and the 3 river basins comprising the primary management

zone for Ring-necked Pheasant.

91 m (300 feet) if localized noise (e.g., traffic)
interfered with hearing pheasant calls. If a
transect was surveyed on >1 occasion, the
highest count was selected.

Brood counts were conducted along fixed
transects 32 km (20 miles) in length on (usu-
ally) 3 days. Timing varied according to plant
phenology each year (1st half of August in
phenologically advanced years, middle 2 weeks
of August in average years, and 2nd half of
August in phenologically late years). In the
morning at, or within 15 minutes after, sunrise
or in the evening leading up to sunset, the ob-
server drove the route at 24-32 km - h~1 (15-20
miles - hr-1} and recorded all pheasants seen:
adult male, adult female with brood, adult
female without brood, or chick (juvenile). If
- necessary, broods were flushed to obtain a
complete count. Counts were not conducted
in rain, fog, or windy conditions.

Call counts were initiated in some areas in
1961, but they were more widely implemented
after 1976 and were initiated in the Snake
River basin in 1982. Brood counts were con-
ducted after 1976 in the Columbia River basin,
and after 1983 or 1984 in the Yakima and Snake
River basins. Analysis was limited to 1982-1998,
and since then call and brood counts have not
been conducted.

Pheasant harvests were estimated through
an annual hunter questionnaire survey, which

was sent to a random sample of hunters and
received from about 10% of them (yearly aver-
age of 6520 questionnaires received). These
estimates were at the county, WDFW region,
and statewide levels. WDFW Regions 1, 2, and
3 correspond to the Snake, Columbia, and
Yakima River basins, respectively. The coeffi-
cient of variation for pheasant harvest (1993—
1999) in the selected counties {see below)
averaged 0.091 (s = 0.018).

Trends were assessed for the years 1982—
1998 because many routes were not run prior
to that period. Estimates by county were lim-
ited to Adams, Benton, Columbia-Garfield,
Franklin, Grant, Walla Walla, Whitman, and
Yakima Counties.

For analysis of trend and statistical power,
indices of pheasant abundance (calls/station
for call counts and pheasants/day for brood
counts) were log-transformed and the analysis
performed on the transformed values. This was
done so that linear regression of transformed
values against time evaluated the proportional
change in the index rather than its absolute
change. For example, a decline from 50 pheas-
ants/day to 25 pheasants/day produces the same
regression coetlicient or slope as a decline of
10 pheasants/day to 3 pheasants/day. Thus, the
relative decline across all routes is evaluated,
regardless of their initial densities. The pro-
portional decline was estimated as e? — 1,
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where e is the base of the natural log, and b is
the slope of the regression. Percent change in
the index equaled (e? ~ 1)(100). Index values
predicted by the regression can be back-trans-

formed into the original units (predicted index
= epmdiatad)_

Power Analysis

Statistical power (1 — the type II error rate)
is the probability of detecting a change of a
specified magnitude given the variability in
the data set, sample size, and signiticance
level (o or type I error rate) for the statistical
test (Cohen 1988). Lower variability increases
power, increasing sample size increases power,
and choosing a higher significance level {e.g.,
o = 0.10 rather than 0.05) increases power. In
monitoring and trend analysis, the statistical
test can be compared to an alarm system (Rice
et al. 2001). We want the alarm to signal when
something we measure reaches a certain value.
However, because our system is imperfect, we
know that sometimes the alarm will go off when
that value has not been reached and some-
times it will remain silent, even when the value
is reached. For power analysis, variability in
the data is a measure of how imperfect the
alarm system is. The value to trigger the alarm
is the magnitude of change we want to be able
to detect. The likelihood of false alarms is set
by the o level for the statistical test. The likeli-
hood of an alarm going off when it “should” is
statistical power. Power and o are tradeoffs; if
we can live with many false alarms, we can
achieve much higher power, and vice versa. In
this analysis an o of 0.10 was used and the cri-
terion for power was 0.90. This implies equal
importance in avoiding false alarms and ensur-
ing the detection of change with the statistical
test.

Like other statistical parameters, power
calculations are estimates. Also, in evaluating
future sampling requirements, these estimates
depend on data gathered in the future being
comparable in variability to those upon which
the power analysis is performed. The results
of power analysis should be interpreted and
applied with this in mind.

An important issue is evaluating underlying
variability. If there are repeated measures,
assessing within-cell variability is one approach
to this. However, for call counts there was
only one count within each cell (at each route
each year). Assessing within-cell variability
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might be feasible for brood counts (with 3
counts/routefyear), but in the available data sets,
individual counts were infrequently reported
(17% of 321 cells).

I performed an analysis of variance (ANOVA)
and estimated variability from the residual error;
i.e., the variation which was not explained by
the ANOVA was used as an estimate of the in-
herent variahility in the data set. In the ANOVA
the factor for route was nested within basin
because that is how routes occur. Another fac-
tor for yvear was nested within basin, which
estimated a year effect for each basin. The
least-squares estimated index was then depen-
dent on which route it was and the values for
other routes in that basin during that year
compared with other years.

For brood counts I estimated variability for
pheasants/day, adults/day, adult females/day,
and adult males/day. From these I selected the
measure with the lowest variability (which
would have the greatest power} for power.
analysis.

I estimated power using JMP (SAS Institute,
Inc. 2000) power analysis options.

Predicting Harvest

There are 2 measures of harvest which
would be important for managers to be able to
predict, total harvest and harvest/day (pheas-
ants harvested/hunter-day). These predictions
have utility at the county, basin, and statewide
levels and might be based on call or brood
counts. For brood counts I considered pheas-
ants/day to be the most likely predictor of har-
vest. Rather than examine all permutations of
these variables and scales, I started with call
counts predicting harvest/day at the county
level, then sought to improve the prediction
by using brood counts. Next, I tested whether
total harvest vielded a better prediction, and
finally 1 broadened the scale to basin an
statewide levels. -

Both call counts and brood counts showed
significant relationships with harvest (see
below), but this does not mean that they func-
tion well in predicting harvest. Because of the
large sample size and the large decline in har-
vest since 1984, a relationship between harvest
and survey indices does not mean it is a close
relationship, but merely a consequence of large
changes in both measures. I portrayed this re-
lationship by estimating the 90% confidence
interval around predicted harvest for the survey
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indices given various sampling intensities.
Given the sampling level and variability in the
relationship, the band encompasses 90% of the
variation in the predicted harvest given the
index value. An indication of the utility of the
surveys is the minimum difference in 2 index
values which would vield nonoverlapping con-
fidence intervals for the 2 estimates.

Upland game managers in Washington
acknowledge that predicting harvest exactly
may not be important, but predicting high,
medium, or low harvest levels would be suffi-
cient. Since this prediction would be relative
to the average for a given area, I used the
weighted average of pheasants/day for each
year and applied ordinal logistic regression to
assess the prediction probabilities of high,
medium, and low harvest. Because counties
differed greatly in the harvest level, assigning
harvest estimates to high, medium, and low
was done separately for each county. The dis-
tribution of basin-wide harvests was compara-
ble across basins, so they were pooled for this
assignment.

Ordinal logistic regression calculates the
probability for each outcome (high, medium,
low), given the observed index values (e.g.,
pheasants/day). The best estimate is the out-
come with the highest probability for a given
index value. The error of the outcome esti-
mate is 1 — the highest outcome probability (or
the sum of the probabilities for the other out-
comes).

RESULTS
Trend Analysis

The number of call and brood counts con-
ducted varied considerably among years {Table
1). The 61 call count transects were conducted
an average of 6.4 times during 19821998
(median = 6, range 1-16) and the 23 brood
count transects an average of 12.6 times (median
= 12, range 3-19).

Estimated total harvest declined over the
entire primary management zone and in each
of the basins in 19841997 (Table 2). All coun-
ties but one showed a significant decline in
total harvest (Table 3) at rates of 3.9-9.2% per
year. Pheasants harvested/day did not show a
consistent trend. Statistically significant but
moderate declines were found in 2 basins (Table
2} and 3 counties (Table 3).
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Calls/station declined over the entire pri-
mary management zone and in all 3 basins
from 1982 to 1998, and the declines were of
similar magnitude (Table 2). In the Snake
River basin, the decline in calls/station was
evident in Columbia-Garfield and Walla Walla
Couuties but not in Whitman County (Table
3). In the Columbia basin, the decline was evi-
dent in all 3 counties (Adams, Franklin, and
Grant), as was the case in the Yakima River
basin, although the trend was not significant
in Yakima County (Table 3).

The total number of pheasants seen/day
(pheasants/day) in brood counts declined over
the entire primary management zone, which
was reflected in significant declines in the
Columbia and Yakima River basins but not in
the Snake River basin (Table 2). Each of the
counties in each basin matched this pattern
(Table 3).

Power Analysis

Variability (root mean square error) for call
counts was estimated at 0.4004077. Brood
count variability was 0.7684459 for pheasants/
day, 0.5553018 for adults/day, 0.5201298 for
adult males/day, and 0.5806677 for hens/day. I
used males/day in power analysis for brood
counts.

For call counts a power of 0.9 was attained
for detecting a decline between 2 years of
about 40% with 11 routes, 60% with 4 routes,
or 80% with 2 routes (Fig. 2). Similarly, power
of 0.9 was attained for detecting increases of
60% with 13 routes and 80% with 9 routes.

For detecting trends in adult males/day in
brood counts (assuming that 3 days were
recorded at each brood route), 2 power of 0.9
was attained for detecting a decline of about
40% with 18 routes, 60% with 6 routes, or 80%
with 3 routes (Fig. 3). Similarly, a power of 0.9
was attained for detecting increases of 60%
with 22 routes and 80% with 14 routes. With
the exception of large declines {>50%) where
differences in samples sizes were less, brood
counts required 60-70% more routes than
crow counts to achieve equivalent power.

Predicting Harvest

The relationship between calls/station and
harvest/day at the county level was weak (Fig.
4). Even for counties with 20 routes, nonover-

lapping confidence intervals occur for very
large differences in calls/station (e.g., 0-25 calls/
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TaBLE 1. Number of call count and brood count routes conducted in Washington State yearly, 1982-1998, by river basin.

Call counts Brood counts
Year Snake Columbia Yakima Total Snake Columbia Yakima Total
1982 9 21 9 39 3 0 { 3
1983 9 20 9 38 3 7 0 10
1984 8 23 10 41 3 7 5 15
1985 9 23 10 42 3 7 6 16
1986 7 22 10 39 3 7 7 17
1987 0 19 12 37 3 7 7 17
1988 6 2 8 16 4 7 7 18
1989 4 2 6 14 4 7 1 12
1950 5 1 4 10 0 6 5 11
1991 0 1 2 3 { 19 6 25
1992 6 7 8 21 0 T 7 14
1993 7 T 7 21 4. i 6 17
1994 5 8 a 19 L 13 6 36
1995 3 (0 10 13 T 0 18 25
1996 4 g 10 23 8 15 16 39
1997 2 0 9 11 4 §; i 11
1998 2 0 0 2 4 4 { 4
Total 95 165 129 389 70 116 104 200

station). As values greater than 20 calls/station
have been rare, this magnitude of distinction
is unlikely. So, although we can predict harvest/
day based on calls/station, the estimate is un-
likely to be statistically different from an esti-
mate for any other value of calls/station.

The relationship between total number of
pheasants seen/day for brood surveys and har-
vest/day at the county level was stronger than
with calls/station, so the precision of the pre-
diction was improved, but not by much. Large
differences in pheasants/day (e.g., 0-50) would
be required to result in nonoverlapping confi-
dence intervals.

Although predicting harvest/day at the
basin level improved the fit, precise predic-
tion was still problematic. Predicting total har-
vest from brood counts on a basin level pro-
duced a better fit that might have some utility
(Fig. 5). Nevertheless, substantial differences
in pheasants/day are needed to produce statis-
tically different estimates (e.g., differences of
34 pheasants/day with 90% confidence with 20
routes/year).

At the statewide level (all 3 basins together),
harvest can be predicted with reasonable con-
tidence (Fig. 6); with 20 routes, differences of
about 28 pheasants/day produce statistically
different estimates (90% confidence).

On the county level, low harvest was most
likely when fewer than 10 pheasants/day were
observed on brood routes: medium harvest

was most likely for 10-30 pheasants/day (Fig.
7). However, the probability of error was
around 50% except for high values of pheas-
ants/day (>40). On the basin level, definition
improved somewhat in that mean pheasants/
day below about 10 gave a high likelihood of
having low harvest, with error probabilities
near 50% otherwise except at very high values
of pheasants/day. Statewide, predicting low,
medium, or high harvest became more feasi-
ble and error probabilities were near 50% only
at the transition areas (Fig. 7). However, if one
desires 90% precision, this level of certainty is
achieved only at fewer than 11 or more than
33 pheasants/day.

DISCUSSION
Trend Analysis

The location of survey routes was deter-
mined subjectively. Thus, trends observed in
survey results apply to high-quality areas. This
was not felt to be a drawback because manage-
ment concern focuses on high-quality areas,
and the same can be expected of hunting
effort and harvest. Determining trends over
the entire range of the pheasant, including poor
and marginal areas, would be difficult, costly,
and of little utility in management. Because of
these considerations, the subjective selection
of route location in high-quality habitat is the
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TaBLE 2. Estimated annual percent change in call and brood counts, in harvest by basin, and in the primary management
zone for pheasant (all 3 basins), 1982-1998.

Annual 9% change
Basin Call counts Brood counts Total harvest Harvest/day
Snake River —4 * ¥ -1 S .|
Columbia River 3% =T —grx —J**
Yakima River o —] 2% ik —Q%
Management zone —4 ¥ —]#* ~ gy H 2
*P = (L10.
P £ 0.05.
TABLE 3. Estimated annual percent change in call and brood counts and harvest by county, 1982-1998.
Annual % change
Basin County Call counts Brood counts Total harvest Harvest/day
Snake Columbia-Garfield -8 -1 3.1 —D ¥
Snake Walla Walla e 1 -3.8% -0.8
Snake Whitman 0 -6 —4 DF* -1.3
Columbia Adams 1% ~ L TN —5.g** 1.7
Colurnbia Franklin —1 1% ~10** —5.2%* -1.4
Columbia Grant —GE* —1§** 7 4%* 2. Ok
Yakima Benton o . —3.0% -1.3
Yakima Yakima g —1G** Q) ek 9 Tk
*F £0.10,
*#P <{.05.

most suitable use of limited resources for
monitoring for management purposes.

The selection of the single highest call count
as the estimate implies a highly skewed distri-
bution of values about the best estimate (i.e.,
there are many “random” factors that might
lower a count, but few that would raise it
above the best estimate). Whether or not this
was appropriate, this procedure introduced a
bias into the data set in cases when only 1
count was made. In recent years (1990 and
later), whether the index value was based on 1
count or 2 counts was not recorded for 30 (24%)
of 123 counts. Of the remaining 93 counts, 16
(17%) were single counts. Overall, the mean (a
more conventional estimate for a given survey)
was 11% below the highest value. At a mini-
mum, because the 2 values were mixed to-
gether in a single index, the resulting analysis
can be expected to have higher variance and
lower power. -

Variation in the number of counts conducted
each year (Table 1) reflects changes in land
use, personnel, and administrative priorities
over time. Although this was undesirable from
an analytic standpoint, this data set reflects

reality and thus represents the basis upon which
managers must make decisions about the re-
sources they manage.

Estimated trends in survey indices were
not in agreement. While close agreement
would probably not be expected, this disparity
was particularly true in the Snake River basin,
where signiticant declines occurred in call
counts but not in brood counts (Table 2), which
appears to be primarily due to this effect
being prominent in Walla Walla County (Table
3). Of 24 locations where both types of routes
were run, 42% were in agreement in that they
detected significant declines in both surveys.
At 33% of the locations, a significant change was
detected in only 1 survey technique. Seventy-
five percent (6) of these were significant
changes in call counts not reflected in brood
counts, while 25% (2} were significant changes
in brood counts not reflected in call counts.

Power Analysis

For both call counts and brood counts, power
was higher for detecting decreases than it was
for comparable increases. This was a conse-
quence of changing the reference value used
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Fig. 2. Contour plot of power to detect given rates of change in call counts between 2 yvears by number of routes/year
(o = 0.10). The insert shows the 0.9 power contour for larger sample sizes.
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Fig. 3. Contour plot of power to detect given rates of change in males/day in brood counts between 2 years by number

of routes/year (assuming 3 survey days/route, o = (.10).

to calculate the percent change. In compar-
isons between 2 years, the statistical test com-
pares 2 values regardless of their order. Thus,
the difference between 7 and 14 is the same as
the difference between 14 and 7. However,

the percentage changes for these 2 examples

are +100% and -50%, respectively. Thus, the
power to detect a 100% increase is the same as
that for detecting a 50% decrease (Figs. 2, 3).
For trend analysis over several years, power
might be expected to increase due to the
greater number of samples. However, as the
specified level of change is distributed over
additional years, the slope (steepness) of the
change decreases, which concomitantly reduces
power. What remains constant is the power to

detect a given magnitude of change for a given
number of total samples. For example, we can
expect to detect a 40% decline in call counts
between 2 years with 12 routes/year, or 24
route-years altogether. Likewise, we can ex-
pect to detect a 40% decline over 3 years with
8 routes/year, or over 8 years with 3 routes/
year (total of 24 route-years). This relationship
between power and total sample size was also
found for bear bait stations (Rice et al. 2001).
Kozicky et al. (1952) estimated sample size
requirements tor detecting difterences in brood
counts between areas. Power was not explic-
itly identified in their analysis, but given that
they apparently used o values of 0.05 and 0.20
(and possibly equivalent type II error rates),
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s Harvestiday = 0.5804 + 0.00465(Calls/station) v Observed
: L | e Precicted
) ——— Upper Gl 1 Route
8] ——— LowerCi 1 Route
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%' ——— Lower C! 2 Routes
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{ ' reeme= Upper C1 20 Rottes
TR h w R % |~ LowrO2Roes
Call/station —= Upper C 50 Routes
—  Lower Ol 50 Routes

Fig. 4. Relationship between calls/station and harvest/day at the county level with prediction confidence bands for the

number of routes/year at the 90% level.

Tatal Havast

Total Harvest = 40,281 + 350.3(Fheasants/Day) .

Chearved

e Precicted

—— UpperCl 5 Routes
——— Lower (1 5 Roules
~—= Lioper C1 10 Routes
——— Lower O 10 Routes
— Upper ¢l 20 Routes
e Lower Cl 20 Routes

Fig. 5. Relationship between pheasants/day and total harvest at the basin level with prediction confidence bands for

the number of routes/vear at the 90% level.

and adjusting for different measures of change,
my interpretation is that their findings were
comparable to mine.

Call count routes exhibit higher power than
brood routes for detecting changes in respec-
tive index values (Figs. 2, 3). Disregarding fac-
tors such as convenience, timing during the
year, costs, and correspondence to the actual
population density, call counts are better than
brood counts for evaluating changes in popu-
lation levels. Nevertheless, there is high likeli-
hood of detecting only <-50% or 2+100%
change between 2 years. Smaller changes in
calls/station are not as likely to vield a statisti-
cally significant result. Detecting long-term

trends is more feasible as is evident in the trend
analysis.

Predicting Harvest

Total harvest was predicted more precisely
than harvest/day. This is not surprising given
the definitive trends in total harvest, call counts,
and brood counts, but not in harvest/day.
Brood counts were better predictors of total
harvest than were call counts. Nevertheless,
predicting harvest at the 30% confidence level
was realistic only at the statewide level.

This analysis was influenced by 2 factors
which might indicate that predictions are actu-
ally better than was estimated. First, harvest
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Fig. 6. Relationship between pheasants/day and harvest/day at the statewide level with prediction confidence bands

for the number of routes/year at the 90% level.
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Fig. 7. Probability of high, medium, or low harvest based on pheasants/day in brood surveys at the county, basin, and

statewide levels.

estimates were treated in the analysis as being
without error. This was not the case, and al-
though variability of these estimates was not
calculated except at the statewide level, it likely
was considerable. This introduced variability
in the analysis, which likely reduced precision

of the prediction. True harvest, although we
do not know what it is, may be predicted con-
siderably better than estimated harvest was.
Second, total harvest is likely to depend on
the amount of pheasant habitat in a given area.
Thus, a high density of pheasants in limited
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habitat (which would have high index values)
- may vield a lower total harvest than lower
densities in more extensive areas of habitat.

The prediction of relative harvest level (high,
medium, low) should not suffer from this last
drawback because these levels were refer-
enced relative to harvest in each county. How-
ever, observations of >40 pheasants/day com-
prised only about 30% of our observations, so
predictions at the county level are of limited
utility and those at the basin level are only
marginally better. As for linear prediction,
prediction based on harvest level functioned
reasonably at the state level.

CONCLUSIONS

Indices for both call counts and brood counts
as well as harvest of pheasants have declined
in the eastern Washington study area over the
last 15 years, but accurately quantifying this
decline was difficult due to varying sensitivi-
ties of the measures, variation among sites,
and short-term fluctuations in environmental
effects. Overall, declines were probably in the
range of 5-10% per year. This may be the
result of declines in both habitat quantity and
quality as a consequence of intensive agricul-
tural operations utilizing suboptimal and mar-
ginal areas.

Pheasants have a high reproductive potential,
and populations can tluctuate considerably in
response to annual differences in environmen-
tal conditions {(Dale 1956). In particular, fair
weather during the nesting season promotes
chick survival, and adequate rainfall for vege-
tative growth increases reproduction through
enhanced nutrition and improved vegetative
cover for nesting and rearing of broods (Hill
and Robertson 1988). Brood counts evaluate
this reproductive level, and because most of the
harvest is of pheasants <1 year of age (Robert-
son 1958), a brood count serves as the best
predictor of harvest. However, this prediction
appears to function satisfactorily only at broad
scales. This predictive capability, nevertheless,
can be improved in several ways: (1) measure
the environmental variables and include them
in the predictive model; (2) model the environ-
mental variables with the previous year’s har-
vest; {3) incorporate site-specific effects in the
analysis. In the present analysis the functional
relationship between brood counts and total
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harvest was considered to be the same in all
areas pooled for a given scale of analysis. This
was done to maintain a simple predictive for-
mula with general application. Incorporating
site-specific eftects would likely improve the
prediction but would result in a more complex
tormula for estimation or perhaps separate for-
mulas for each area.

The recent increase in the annual release of
pen-reared pheasants is likely to reduce our
ability to predict harvest in the future. This is
not solely a result ot additional birds affecting
each year’s predictions. In addition, the re-
finement of the predictive equation based on
future surveys would be confounded by the
harvest of birds not present during brood counts.
It would therefore be desirable to include the
number of birds released as a variable in future
analyses.

Pheasant chick survival varies substantially
among vears (Riley et al. 1998), hence the higher
variability in pheasant/day in brood counts.
Nevertheless, variability in brood counts for
adults/day, adult females/day, and adult males/
day was higher than that for crows/station in
call counts and had lower power. I conclude
that call counts are most effective for popula-
tion monitoring, while brood counts are better
for predicting harvest. However, even with
substantial samples for call counts, only large
changes are likely to be detected in the short
term (23 years), and the precision of harvest
prediction based on brood counts is low. For
these reasons, these surveys have not been
judged as cost-effective in Washington and
have been discontinued.
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