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Abstract: Eelgrass (Zostera marina) provides important ecological services in the nearshore, has 
been designated as critical habitat, and is protected by a no-net-loss policy in Washington State.  
When projects are proposed that may impact eelgrass, such as installing docks or underwater 
cables, the state of Washington may require surveys to monitor changes in eelgrass density.  The 
guidelines for surveys required by the Washington Department of Fish and Wildlife are 
sufficiently general to allow rigorous monitoring.  However, specific guidance describing 
sufficient sample sizes and analytical methods has not yet been developed.  We used data from a 
previous study to estimate the number of samples required to reliably detect a range of declines in 
shoot density using a before-after-control-impact (BACI) survey design.  Sufficient sample size 
to detect a change in eelgrass density is a function of the magnitude of the change in density 
(effect size), sampling design (including number of samples), variation of eelgrass density among 
samples, and selected probabilities of Type I and Type II errors.  Our study demonstrates the need 
to consider these factors, with particular reference to Type II errors, when developing sampling 
designs.  Our results have implications for most eelgrass monitoring projects.   
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Introduction  

Eelgrass (Zostra marina) and is an important ecosystems component that provides habitat for 

many species, including imperiled salmon (Simonstad 1994).  Because of its importance as an 

ecosystem component, eelgrass is designated a habitat of special concern by the Washington 

Department of Fish and Wildlife (WDFW) and critical habitat by the Washington Department of 

Ecology.  Eelgrass density and persistence are affected by human activities (Short and Wyllie-

Echeverria 1996, Burdick and Short 1999) such as the installation of docks and the armoring of 

shorelines.  In the Georgia Basin/Puget Sound the geographic distribution of eelgrass is declining 

and is becoming increasingly fragmented (Dowty et al. 2005).                

 

Several studies have been initiated to assess the status and trends of eelgrass and to measure the 

effect of human activities on eelgrass.  In Washington, monitoring is required to ensure no net 

loss of eelgrass on projects permitted under the WDFW’s Hydraulic Project Authority.  However, 

spatial and temporal variation in eelgrass density can render equivocal the results of otherwise 

well-designed studies (Fresh et al. 2006).  We provide an example of some challenges faced by 

scientists and suggest some methods to improve eelgrass study efficiency.  Our goal is to provide 

information that facilitates the development of more efficient study designs and increases the 

probability of obtaining reliable results.  Specifically, our objectives were to 1) examine empirical 

data to identify opportunities for improved efficiency, 2) conduct power analyses using empirical 

data to estimate sample sizes sufficient to reliably detect differences (changes) in eelgrass density, 

and 3) identify some important decisions scientists can make before initiating a study.   

 

Methods  

Fresh et al. (2006) collected eelgrass shoot density data at 11 floats at 10 locations in Puget Sound 

to assess the efficacy of using light-permeable grating to reduce the impacts of dock floats on 

eelgrass density.  Eelgrass densities were measured by SCUBA divers within 0.25-m2 quadrats 

along transects under floats (impact areas) and in control areas (Fresh et al. 2006).  From 16 to 90 

samples were collected at each location.  We used density data collected from one pre-impact 

survey and one post-impact survey at each float and control to calculate sample sizes sufficient to 

detect declines in density (effect size) of 10, 25, 50, 75, and 100 percent using a before-after-

control-impact (BACI; Green 1979) design and one-tailed ANOVA at critical values (α) of 0.05 

and 0.10, and statistical power (1-β) of 0.8 and 0.9.  We calculated the mean and range of 

predicted sufficient sample sizes for each of the 11 locations to demonstrate variability in 

sampling sufficiency among studies.   



 

Results 

Mean eelgrass density varied within and among study locations (Figure 1, Fresh et al. 2006), 

affecting large estimates of sufficient sample size that differ substantially among locations 

(Figure 2).  Selection of critical values had a relatively small effect on estimates of sufficient 

sample size (Figure 2).  Changing α from 0.05 to 0.10 decreases the mean predicted sufficient 

sample size at statistical power = 0.90 and 0.80 by approximately 22% and 26%, respectively.  

Meeting specific levels of statistical power also had a relatively small effect on sufficient sample 

size.  Changing statistical power from 0.90 to 0.80 at α = 0.05 and 0.10 reduces estimates of 

sufficient sample size by 25% and 30%, respectively.  The selection of detectable effect size had 

a relatively large effect on estimates of sufficient sample size.  Changing the effect size from a 

25% to 50% decline in mean eelgrass density reduced the estimates of sufficient sample size by 

74%.  The effect of the detectable effect size on sufficient sample size is nonlinear.  Sufficient 

sample size decreases at a decreasing rate as the effect size becomes larger (Figure 2).   
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Figure 1.  Mean and 95% CI of eelgrass density at before (Filled) and after (Unfilled) treatments 
at control (Diamond) and impact (Circle) sites at 11 locations in Puget Sound.   



Figure 2.  Mean and range of estimates of sufficient sample sizes to detect declines in mean 
eelgrass density of 10%, 25%, 50%, 75%, and 100% using a BACI design, critical values of 0.05 
and 0.10, and statistical power of 0.90 and 0.80.   
 

Discussion 

Variation in eelgrass density within locations can dramatically increase the sample size necessary 

to reliably detect changes in eelgrass density.  We emphasize the importance of carefully 

developing experimental designs and the possibility of conducting studies of eelgrass that have 

low statistical power.  That is, without sufficient sampling studies are likely to fail to detect a 
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decline in eelgrass density when one has occurred.  Variation in sufficient sample size among 

locations suggests that sampling protocols should be specifically designed for each survey or 

experiment.  A sampling protocol sufficient for most locations may excessively sample many 

locations.  Carefully selecting critical values and statistical power can reduce sufficient sample 

size (Peterman 1990).  We suggest that given the cost of sampling and the range of sample sizes 

sufficient to detect changes in eelgrass density (see Figure 2), scientists should conduct 

preliminary surveys that estimate variability in eelgrass density and conduct a priori power 

analyses prior to designing and implementing studies.     

 

Power analyses that estimate sufficient sample size using pre-study data can facilitate efficient 

surveys (Green 1979, Peterman 1990, Taylor and Gerrodette 1993).  Using a BACI design with 

several controls (Green 1979, Stewart-Oaten et al. 1986, Underwood 1991) can account for 

regional changes in density that can be misinterpreted as effects.  Using paired samples and 

repeated measurements can also reduce the sufficient sample size (Green 1979, Quist et al. 2006).  

Variability in eelgrass density estimates can necessitate very large sample sizes that may render 

some studies infeasible (Krueger et al. 1998, Rodgers et al. 1992).   
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