Surveillance for Early Detection of Highly Pathogenic Avian Influenza HPAI H5N1 in Wild Birds: 2009-10 Washington Interagency Sampling Plan July 1, 2009

Avian influenza is widely endemic in wild populations of waterfowl and many other species of birds. The emergence and spread of a Highly Pathogenic Avian Influenza (HPAI) H5N1 subtype in Asia over the past few years (hereafter called HPAI H5N1) has elevated concerns about potential expansion of this virus to North America. Apprehensions among government agencies and the public are based on a range of possibilities that include sickness and mortality in wild bird populations, introduction of a disease that could devastate the poultry industry, and potential mutation of the virus into a form that could be highly infectious and pathogenic to humans—possibly the source of a flu pandemic. Currently, public concern has been heightened by extensive media coverage about this virus in Asia, its spread to Europe, and the small number of human infections—much of it includes speculation that migratory birds are a primary vector and will bring it to North America. Thus, government agencies, particularly state and federal wildlife agencies, are being called upon to develop an early detection system to determine if and when the virus arrives in North America.

Some clarifications of terms and the current situation are warranted because the terminology of avian influenza is often confusing, and it is important that a shared understanding of this disease is accurate. For purposes of this plan, here are some key points and assumptions as of June 2009:

- Migratory aquatic birds are the natural reservoir for many of the 144 subtypes of avian influenza, named for their protein components hemagglutinin (H) and neuraminidase (N). Most avian influenza types are not very pathogenic, but the H5 and H7 types seem to be more pathogenic to domestic poultry.

- The terms “highly pathogenic” (HPAI) and “low pathogenic” (LPAI) refer specifically to pathogenicity to domestic poultry—testing for HPAI is documented by mortality rates in dosed poultry.

- Some avian influenza varieties may mutate into forms that become pathogenic to specific taxa (e.g., birds, swine, humans). The currently prominent HPAI H5N1 virus is highly pathogenic to some birds, particularly domestic poultry, but is not easily transmitted to people. This is primarily a bird disease that has infected a small number of people who have been heavily exposed to infected poultry or raw poultry parts.

- The HPAI H5N1 strain has not been detected in North America. Low pathogenic H5N1 and a wide variety of other AI types have been documented in poultry and wild birds.

- The degree to which migratory birds may be agents in the spread of HPAI H5N1 is not definitive. In nearly all cases of expansion in Eurasia, movement of poultry and poultry products by humans are suspected as the primary vehicle for transmission of the virus across the continents. Mortalities of wild birds have
been associated with contact or shared use of habitats with domestic birds. However, local distribution of HPAI H5N1 may be linked to transmission by migratory birds.

- Currently, there is inadequate information about the virulence of HPAI H5N1 in wild bird species, its persistence in wild populations, and the degree to which it can spread from bird to bird during seasonal and annual cycles. Fecal and respiratory contamination is assumed to be the primary mode of transmission, and viruses can remain viable for extensive periods in cold, fresh water.

- The onset of a major human influenza pandemic could result if some form of AI—HPAI H5N1 or any other type—adapted into a form that was infectious and virulent among humans and easily transmitted from human to human. It is not assured that HPAI H5N1 is the most likely threat for a global pandemic.

GOAL AND OBJECTIVE

The overall goal of this state-level effort is to detect HPAI H5N1 in wild birds if it occurs in Washington during July 2009 through June 2010. This goal, and the goals of the national strategy and the Pacific Flyway strategy, is focused on early detection of HPAI H5N1 in wild migratory birds—not its prevalence over time, its rate of movement, or the ecology of the disease. This document is intended as a step-down approach from the draft U.S. Interagency Strategic Plan (Interagency HPAI Early Detection Working Group [IAEDWG] 2006) and the Pacific Flyway strategic plan (Pacific Flyway Council 2006, as amended in 2007), as part of the National Early Detection System for HPAI H5N1.

The objective of this document is to provide an implementation plan for sampling wild bird species for HPAI H5N1 in Washington State, including sampling priorities, focus periods, and target locations. Planning for these surveillance efforts for HPAI H5N1 has involved extensive cooperation among federal, state, and local agencies, including U.S. Department of Agriculture APHIS/Wildlife Services (USDA), U.S. Fish and Wildlife Service (USFWS), and the Washington Interagency Avian Influenza Coordination Committee (including the agencies listed above and the Washington Department of Agriculture, Washington Animal Disease Diagnostic Laboratory, Washington Department of Health, Washington Military Department, and Washington Emergency Management Division).

APPROACH

Species Priorities

During development of the U.S. strategic plan, wildlife agencies in Alaska collaborated with the U.S. Geological Survey, National Wildlife Health Center (NWHC) and others to establish relative priorities among migratory bird species in terms of the relative probability that they could be exposed to HPAI H5N1 (IAEDWG 2006). The Pacific Flyway Council subsequently developed a preliminary list of surveillance candidates that reflects both “primary” species that could come directly from breeding grounds in Asia, as well as “secondary” species that would likely intermingle with Asian migrants and speculatively could be subject to secondary transmission. Monitoring abundant
“secondary” species, such as juvenile mallards, may be useful if HPAI H5N1 is not detected in Alaska but makes its way through migrants to Washington. The Washington State Plan’s sampling strategies are focused on primary and secondary species occurring in Washington (see Table 1), considering national and Pacific Flyway strategic plan priorities.

Table 1. Primary and secondary candidate waterfowl and shorebird species for HPAI H5N1 surveillance of live and hunter-killed birds in Washington.

<table>
<thead>
<tr>
<th>Primary Candidates</th>
<th>Secondary Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesser Snow Goose (Wrangel Is.)</td>
<td>Cackling Goose</td>
</tr>
<tr>
<td>Pacific Brant</td>
<td>Mallard</td>
</tr>
<tr>
<td>Northern Pintail</td>
<td>American Wigeon</td>
</tr>
<tr>
<td>Swan (Tundra and Trumpeter)</td>
<td>American Green-winged Teal</td>
</tr>
<tr>
<td></td>
<td>Northern Shoveler</td>
</tr>
<tr>
<td></td>
<td>Wood Duck</td>
</tr>
</tbody>
</table>

In 2009, emphasis will be placed on maintaining hunter-harvest sampling, and focusing live-bird sampling on competent carriers (primary and secondary species). Evidence from 2006-09 sampling has shown that dabbling ducks can be significant reservoirs of low pathogenic avian influenza and therefore could serve as asymptomatic carriers of HPAI. Based on the amended Pacific Flyway surveillance plan, sampling of pintails (Asian connections) and juvenile mallards (wild sentinel birds) will continue to be emphasized. Sampling of shorebirds will be discontinued due to low prevalence of avian influenza, as reported in Iverson et al. (2008).

Sampling Intensity

Currently, there is no reliable information on the prevalence of HPAI H5N1 in wild bird populations globally. The national and Pacific Flyway plans suggest that a minimum of 200 samples would be required to detect one positive HPAI H5N1 sample in a defined population with >1,000 individuals (probability 95%) if the virus had a prevalence of only 1%. Statistically, sampling rates need to be higher with larger populations, but could be lower if the prevalence of H5N1 was greater. This hypothetical approach assumes that the population of interest is homogenous and entirely accessible for sampling, that H5N1 is uniformly distributed within that population, and that representative sampling can be done in a random or otherwise unbiased manner, which is not the expected case in wild migratory waterfowl.

Funding

Federal funding for 2009-10 surveillance activities has been allocated to federal agencies in Washington, and a portion will be passed through to state agencies. USDA ranked states for funding prioritization using criteria such as migratory bird relative abundance, sampling efficacy based upon that abundance, and resource capabilities of the state agencies (USDA 2009). Washington was ranked as a level 1 State, and WDFW will receive $70,000 from USDA to collect and ship 600 samples from live birds and hunter-killed waterfowl.
These funds must be spent during WDFW FY 2010 (July 1, 2009 – June 30, 2010). In addition, USDA is receiving direct funding to collect 800 samples from live and hunter-killed birds. USDA direct non-contract expenditures must occur by the end of federal FY 2009.

USFWS will provide $187,150 for sampling activities related to HPAI H5N1 in Washington State in 2009. This funding will be used by WDFW to collect 700 live and hunter-killed samples, and expand an extensive surveillance and sampling network for mortality events developed in 2006-08. Distribution of USFWS funds will follow priorities outlined in this plan.

General Sampling Methods

Several methods will be employed to monitor for HPAI H5N1 presence in Washington’s wild migratory waterfowl and shorebirds. This plan is intended to provide efficient surveillance with an array of methods designed in the context of regional, flyway, national efforts, and available funding. If HPAI H5N1 is carried to North America from migratory birds moving through Alaska, it is likely to move south with about 150,000 swans, 1 million geese, and 12 million ducks that leave Alaska beginning in August (>60% oriented toward the Pacific Flyway. Many of these birds pass through and/or winter in Washington. The challenge, given existing budgetary constraints, will be to mount a detection network in Washington of sufficient coverage to detect birds potentially infected with HPAI H5N1, including a relatively small number of Asian migrants, secondarily infected birds, and locally produced birds that may acquire the virus. Additional details on sampling methods are provided in a later section entitled “Sampling Strategies for the Detection of HPAI H5N1 in Washington Wild Birds” (also see summary in Appendix 1).

Detection and Monitoring of Morbidity-Mortality Events

An enhanced surveillance and reporting network for detecting wildlife mortality events will be continued by WDFW utilizing a toll-free telephone reporting line, combined with an existing reporting system with county health agencies to monitor bird mortalities from West Nile Virus. An expanded program to investigate mortalities will be continued to integrate with this network, and along with other reports of avian mortalities. In the event of a major event, Washington cooperators will work with U.S. Fish and Wildlife Service, U.S. Department of Agriculture, the USGS National Wildlife Health Center, and state animal health authorities to implement the plan Washington Multi-Agency Response to a Highly Pathogenic Avian Influenza Animal Emergency (WSDA 2007).

In 2009, morbidity and mortality surveillance will continue to utilize most of the proactive, systematic surveys initiated in 2006-08. Priority investigations will be initiated on reports of unusual single-species die-offs, and events involving species suspected to be at increased risk for acquiring HPAI. Training of field personnel in mortality investigations will be emphasized. In addition, pro-active public education programs will be implemented.
We have utilized available population survey and hunter-harvest data to determine waterfowl concentration areas across Washington. Areas with large concentrations of waterfowl will be systematically surveyed for mortality of susceptible birds. These areas include state, federal and private lands with high waterfowl use.

Sampling Live Birds - Waterfowl

In Washington, banding programs can provide access to large numbers of waterfowl. Sampling during ongoing and new banding operations will focus on Asian or Alaska connections—including capture of dabbling ducks from August to October prior to hunting seasons. Following the strategies described in the amended Pacific Flyway strategic plan, live bird sampling in Washington will focus on mallards and pintails, but secondary species that meet the prioritization criteria (green-winged teal, shoveler, wood duck) will be sampled on an opportunistic basis. Samples from live birds will be cloacal and oral-pharyngeal swabs. Birds captured during testing for HPAI H5N1 will be banded to document recaptures and distribution during the 2009-10 season.

Birds that breed and molt in Washington in 2009 will not likely have the potential for contact with HPAI H5N1, unless or until they mingle with Asian/Alaska migrants. Locally produced birds can act as wild sentinel birds to detect the arrival of HPAI H5N1 after migrants from Alaska have arrived. This is based on findings that: (1) mallards and pintails are known reservoirs of low pathogenic viruses with higher prevalence rates than some other species; (2) juvenile ducks have the highest prevalence of LPAI among North American surveys; and (3) the rate of virus shedding is high during late summer and early migration staging. Sampling of local mallards will occur during late summer banding, after migrants from Alaska are known to occur in the area.

Sampling Hunter-Harvested Waterfowl

Hunters in Washington currently harvest about 400,000 ducks and 30,000 geese annually. This presents an opportunity to access and sample a large number of harvested birds, primarily on public hunting areas with existing check stations. In some cases, to meet species/area sampling goals, additional check stations or hunter contact sites will be established with enhanced staffing and support.

The harvest sampling regime is designed to test both migrant waterfowl from the north, as well as sample local mallards that may be taken in the early part of seasons. Wrangel Island snow goose, brant, cackling geese, mallard, and wigeon will be the primary species of focus, but other species that meet the prioritization criteria (pintail, green-winged teal, wood duck, and shoveler) will be sampled on an opportunistic basis. Samples from hunter-killed birds will be cloacal and oral-pharyngeal swabs. Following the end of waterfowl seasons, directed collection under existing federal scientific collection permits will only be used if required sample sizes have not been achieved using the above methods.

Staffing

USDA has assigned 20 staff to this effort. Existing WDFW permanent staff and temporary staff will be assigned to this project to meet sampling goals and develop the mortality response network. Additional needs for assistance will be filled by other
WDFW permanent staff, who will be able to charge time and expenses to the project when collecting samples.

Methodologies and Training

Basic protocols for taking and handling avian influenza samples have been developed in cooperation with NWHC, USDA, and other cooperators. The national strategic plan includes procedures and protocols for taking oral-pharyngeal and cloacal swabs, collecting carcasses, collecting fecal samples, and shipping to laboratories (IAEDWG 2006). Sampling kits - including vials with media, coolers, and initial shipping containers - will be provided by the funding agencies. USDA kits will include sampling swabs and USFWS kits will not. Some shipping containers will need to be purchased for smaller shipments. In general, samples cannot be held longer than 72 hours and can only be shipped on Mondays, Tuesdays, and Wednesdays. Field staff collecting samples will be required to wear personal protective equipment (PPE) as required by USFWS. All Washington State personnel involved in collecting samples will be required to adhere to collection protocols.

Given that there will be a substantial investment of resources to implement HPAI H5N1 surveillance in the Pacific Flyway, and that quality control of sample collection is vital, there is an immediate need for training and collaborative planning among cooperators. The NWHC and USDA have developed training materials and web-based distance-delivery tools. In addition, individual training sessions for cooperators will be arranged in summer 2009 to cover sample collection protocols. All Washington State personnel involved in collecting samples will be required to complete these training regimes.

Analytical Capabilities and Data Management

Swab samples that will be analyzed with USDA funds and Washington Department of Agriculture funds will be sent to one of the following labs:

Eastern Washington

Washington Animal Disease Diagnostic Lab
Bustad Hall Room 155-N
Pullman, WA 99164-7034
Primary Contact:
 Dr. Terry McElwain
 509/335-9696

Western Washington

Avian Health and Food Safety Laboratory
7613 Pioneer Way E.
Puyallup, WA 98371-4919
Primary Contact:
 Dr. A. S. Dhillon
 253-445-4537
Swab samples and carcasses that will be analyzed with USFWS funds will be sent to the USGS National Wildlife Health Research Center in Madison, Wisconsin:

USGS National Wildlife Health Center
6006 Schroeder Road
Madison, WI 53711
Primary Contact:
 Dr. Leslie Dierauf
 608-270-2400

All fecal samples will be analyzed at the USDA-NWRC laboratory in Fort Collins:

USDA/APHIS/WS
National Wildlife Research Center
4101 LaPorte Avenue
Fort Collins, CO 80521-2154
Primary Contact:
 Dr. Robert G. McLean
 (970) 266-6122

WDFW will provide centralized tracking and shipping of samples and will maintain databases and take other steps to ensure quality control and assurance. All samples and results will be contributed to an integrated database. USDA and USDI have developed web-based database and archive systems that are associated with the USGS National Biological Information Infrastructure - Wildlife Disease Information Node (WDIN). Washington cooperators will use this system to integrate reporting of sampling and testing data.

Coordination and Communication

Because of the importance and public impacts of a confirmation of HPAI H5N1 by the NVSL, notification will go first to top federal and state officials (e.g., Secretaries of Agriculture and Interior, Governors, Directors, etc.). A Steering Committee consisting of USGS, USFWS, USDA-APHIS, IAFWA, HHS, the National Flyway Council, and Alaska has been formed to facilitate communication and coordination among state and federal agencies for contingency planning and other preparations for the appearance of highly pathogenic H5N1 avian influenza virus in wild birds in North America.

It is anticipated that strategies outlined in this plan will change significantly if a positive test for H5, H5N1, or HPAI H5N1 is received. Resources will necessarily be redirected to assist in interagency response to a positive test. In the case of a positive test for HPAI H5N1 in any location of the Pacific Flyway, a working group comprised of membership of the Pacific Flyway Study Committee, Pacific Flyway Non-Game Technical Committee, USFWS, USDA, USGS and state animal health veterinarians will convene immediately to formulate recommendations for specific state redirection of established surveillance. These recommendations will be forwarded immediately to the National Steering Committee.
1. Morbidity and Mortality Events

According to the national strategic plan, “The systematic investigation of morbidity and mortality events in wild birds to determine if the highly pathogenic H5N1 avian influenza subtype of avian influenza (AI) is playing a role in causing illness and death offers the highest and earliest probability of detecting the virus if it is introduced by migratory birds into the United States.” WDFW will employ the 3 methods listed below for implementing the Morbidity and Mortality Investigation sampling strategy of this plan.

a. Continue routine mortality event investigations throughout the state

Background: Each year, several hundred sick and dead migratory birds are recovered in Washington, affected by a variety of infectious and non-infectious conditions. Common causes of bird mortalities include infectious diseases (salmonellosis, avian cholera, aspergillosis, pox), poisoning (lead, pesticides, natural toxins), predation by domestic cats and dogs, and trauma (collisions with buildings, powerlines, vehicles, and aircraft, gunshot). In addition, large-scale mortalities of some species, particularly seabirds, occur every year caused by starvation or by drowning in fishing gear. WDFW routinely investigates reports of dead wild birds. Typically, dead bird reports are made to the WDFW wildlife veterinarian by WDFW field staff, other agencies, or members of the public.

As more people become aware of avian influenza and concerned about sick and dead birds they may encounter, it is expected that the number of reports WDFW receives will greatly increase. In order to prevent WDFW’s existing mortality investigation system from becoming overwhelmed, it will be necessary to work with cooperating local, state, and federal agencies to continue to improve reporting systems and to enhance field response capabilities for mortality investigations.

Methods: WDFW will continue the use of its toll-free telephone system established in 2006 to solicit reports of bird mortalities, and increase publicity of the toll-free number. This system is linked to the current West Nile Virus reporting system. WDFW has developed criteria for county agencies to use in routing reports. It is anticipated that WDFW will continue to receive direct reports from other sources, including other agencies (e.g. USDA and USFWS refuges). The toll-free number and a basic disease information fact sheet will be provided to groups likely to have interactions with wildlife, or encounters with sick or dead birds. This group includes, but is not limited to, federal law enforcement agents, wildlife rehabilitators, hunters, and birding organizations. Efforts will be coordinated between all state and federal agencies so that the same message is sent consistently to the public.
In general, WDFW will be the primary contact for dead bird reports (except for corvids) and will make the determination as to whether a field investigation is needed. An interagency mortality investigation network will be continued, with each member assigned responsibility for a given geographical area. If a field investigation is needed, the appropriate member of the mortality investigation network will be notified of the need to respond. Existing WDFW permanent staff and temporary staff will be assigned to participate in the mortality response network. Additional needs for assistance will be filled by other WDFW permanent staff, who will be able to charge time and expenses to the project when collecting samples. In addition, USDA will have field staff available to assist with mortality investigations throughout the state, and USFWS and National Park Service will investigate mortalities on their lands. A phone tree has been developed for each geographical area, in case the primary member of the network in that area is unavailable. WDFW will provide the phone tree to the USFWS Region 1 AI coordinator.

When reports are received, information about the mortality event will be collected including: the location, species, number of birds, sex and age classes, clinical signs, duration of the event, population(s) at risk, and any pertinent environmental factors. Further investigation is deemed warranted only when obvious causes of death (such as trauma) cannot be ruled out and suitable carcasses are available for diagnostic evaluation. If these criteria are met, and HPAI H5N1 cannot be ruled out as a cause of death, project funding will be used to submit a either a representative sample of carcasses to the USGS National Wildlife Health Center in Madison, WI, or paired swab samples to state WADDL labs. Swab samples from mortality investigations will be combined tracheal and cloacal swabs. WDFW will create and distribute regular summaries of the number of calls and outcome of those calls.

The involvement of multiple organizations will require close coordination and data sharing. Training sessions will be held throughout the state to ensure that all cooperators follow consistent protocols with respect to response criteria, sample collection, shipping, and information management.

Responsibility: WDFW, USDA, USFWS (on refuges), other federal agencies, tribes.

b. Test sick and dead swans for avian influenza

Background: Swans have been one of the primary species groups affected by HPAI H5N1 in Asia and Europe. Trumpeter swans offer a potentially efficient sampling opportunity due to annual collection of sick and dead trumpeter swans in the north Puget Sound area. Each year since 1999, several hundred trumpeter swans have died in this area due to ingestion of lead shot, and these birds have been regularly collected to reduce secondary poisoning of other species. WDFW also regularly collects tundra swans that die from powerline collisions and other causes.
Methods: Collection of sick and dead swans will continue in 2009-10 through WDFW. It is anticipated that up to 100 usable samples (paired cloacal and tracheal swabs) can be collected in 2009-10 if current mortality levels continue. Most of these samples will be collected when lead mortalities typically occur in December and January, but other opportunistic collections will occur during the entire wintering period. Samples will be sent to state WADDL labs. USFWS will receive reports regarding swan collections.

Responsibility: WDFW

c. **Implement active mortality / morbidity surveillance**

Background: The most recent update of the Pacific Flyway plan calls for active surveillance for sick and dead birds in major concentration areas. In many cases, agencies do not receive reports from the public when they encounter sick or dead birds. Based on incidence of HPAI H5N1 discoveries in Europe and Asia, these samples are probably the most valuable for detecting the virus in the wild.

Methods: Surveillance for candidate species (see Table 2) identified by USFWS will be implemented in association with other AI sample collection activities and other agency activities in major waterfowl concentration areas (North Puget Sound, Columbia Basin, Yakima Basin, southwest Washington), considering areas of emphasis identified in Appendix 2. Additional outreach to all agency field biologists will greatly expand our reporting network. Targeted surveillance will also involve the areas listed in Table 3.

Table 2: Primary and Secondary Candidate Species for HPAI H5N1 Mortality Surveillance

<table>
<thead>
<tr>
<th>Primary Candidate Species</th>
<th>Secondary Candidate Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Cygnus (swans)</td>
<td>Greater white-fronted geese (closest NA relative of bar-headed geese)</td>
</tr>
<tr>
<td>Trumpeter swan</td>
<td>Other dabbling duck species</td>
</tr>
<tr>
<td>Tundra swan</td>
<td>Wood duck</td>
</tr>
<tr>
<td>Feral swans</td>
<td>Northern shoveler</td>
</tr>
<tr>
<td>Grebes, esp. Eared grebes</td>
<td></td>
</tr>
<tr>
<td>Subfamily Aythyinae</td>
<td>Other waterbirds</td>
</tr>
<tr>
<td>Canvasback</td>
<td>Herons, egrets, cormorants</td>
</tr>
<tr>
<td>Scaup (greater and lesser)</td>
<td>Lariidae, including terns and relatives of laughing, black-headed, and brown-headed gulls</td>
</tr>
<tr>
<td>Redhead</td>
<td>Other Charadriiformes</td>
</tr>
<tr>
<td>Ring-necked Duck</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Targeted HPAI H5N1 Mortality / Morbidity Surveillance

<table>
<thead>
<tr>
<th>Area</th>
<th>Technique</th>
<th>Target Species</th>
<th>Agency / Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whatcom, Skagit Co.</td>
<td>Aerial, ground surveys</td>
<td>Trumpeter, Tundra Swan</td>
<td>WDFW, University of Washington</td>
</tr>
<tr>
<td>Chehalis Valley</td>
<td>Ground surveys</td>
<td>Trumpeter Swan</td>
<td>WDFW</td>
</tr>
<tr>
<td>SW WA</td>
<td>Ground surveys</td>
<td>Tundra Swan, Diving Ducks</td>
<td>USFWS (Hoskins)</td>
</tr>
<tr>
<td>Ridgefield NWR</td>
<td>Ground surveys</td>
<td>Shoveler</td>
<td>USFWS (Ridgefield NWR and/or Hoskins)</td>
</tr>
<tr>
<td>S. Columbia Basin</td>
<td>Ground surveys</td>
<td>Diving / Dabbling Ducks</td>
<td>WDFW</td>
</tr>
</tbody>
</table>

Surveillance will continue monthly until guidance or funding from federal agencies dictates discontinuation. Based on waterfowl density patterns throughout the year two survey periods are recommended; October through March, and April through September. During October through March when waterfowl densities peak in Washington all identified surveillance sites will be monitored. During April through September important breeding areas will be monitored, and other areas may be monitored if environmental conditions and/or bird movements are noted that warrant surveillance.

During October through March, targeted surveillance areas would be monitored at minimum one day a week. Field personnel and area managers will determine protocols for each area based on suggestions outlined in Appendix 2. Monitoring efforts will be integrated with ongoing normal field operations to the greatest extent possible. If additional assistance or special monitoring is deemed necessary for any one area, the use of temporary/seasonal employees will be considered. WDFW staff will conduct surveillance of waterfowl use areas on the Mid-Columbia National Wildlife Refuge Complex (primarily McNary NWR). WDFW staff will coordinate with the Refuge Manager (Brian Allen, 541-922-4661) to determine specific locations and schedules for surveillance activities and will include the Refuge Manager on reports of surveillance activities and any morbidity/mortality events discovered on refuge property.

During April through September, surveillance areas with significant breeding populations would be monitored once monthly. Again, protocols integrating monitoring in ongoing field operations will be developed. WDFW will combine data from all active surveillance surveys with data from WDFW routine mortality event investigations, and distribute regular summaries.

In addition, several ongoing management programs will be enhanced for mortality/morbidity surveillance; these programs are the Puget Sound Assessment and Monitoring Program (PSAMP), periodic North Puget Sound waterfowl surveys, and the statewide duck breeding population survey. PSAMP surveys utilize aerial transects, periodic North Puget Sound waterfowl surveys utilize area inventories, and Washington Breeding Waterfowl Population Surveys utilize aerial plot surveys in western Washington and ground transects in eastern Washington.
Washington. Enhancing these programs will expand the spatial and temporal surveillance beyond previous efforts.

Responsibility: WDFW, USFWS, USDA

2. **Live and Hunter Killed Birds**

 a. **Primary Species**

 Lesser Snow Goose (*Chen caerulescens caerulescens*)

 Background: Lesser snow geese from Wrangel Island, Russia, could come into contact with HPAI H5N1 because they breed and migrate through parts of northeast Asia. The entire breeding population of Wrangel Island migrates through Alaska and over 60% winters in Washington. The current Washington-BC population of Wrangel Island snow geese is approximately 60,000.

 Methods: We propose to sample Wrangel Island snow geese by targeting principal fall and winter use areas in north Puget Sound, including the Skagit Wildlife Area and surrounding private lands in Skagit, Snohomish, and Island counties. A total of 200 samples will be collected, due to the direct link of this population to Asian breeding areas. We propose a sample design targeting hunter-killed birds during November-January (see Appendix 1). Samples would be collected using a combination of methods, focusing on hunter field checks, mandatory enforcement check stations, and directed collections. Part of the samples may also be provided as a result of increased mortality surveillance of wintering flocks.

 Responsibility: WDFW

 Pacific Brant (*Branta bernicla*)

 Background: Brant that breed and winter in northeastern Asia have both direct and indirect links with Washington. Several thousand black brant breed and molt along the arctic coast of Russia and Wrangel Island. The highest probability of HPAI H5N1 transmission from these brant to other brant is at Izembek Lagoon, Alaska, in the fall. Izembek Lagoon and adjacent embayments support virtually the entire population of brant during fall, including brant that migrate through or winter in Washington.

 Methods: We propose to sample brant from hunter-killed birds. A total of 200 samples from hunter-killed brant will be taken during the January brant season in Padilla, Samish, and Fidalgo Bays in Skagit County (see Appendix 1). Samples
will be collected in Skagit County (e.g. Swinomish channel, Samish Bay) through hunter field checks and possibly directed collections.

Responsibility: WDFW

Northern Pintail (Anas acuta)

Background: Northern pintail is a common duck in western Washington during migration and wintering periods. The combination of band recovery and satellite telemetry data indicates that birds wintering in Asia are found in Alaska in summer, possibly mixing with birds that winter in Washington. Satellite telemetry data demonstrate that pintails marked in California regularly move through Washington and cross the Bering Straits to Asia during the summer months (Miller et al. 2005). For these reasons, pintail is listed as a priority duck species proposed for sampling in 2009-10.

Methods: We propose to sample pintails by targeting known fall and spring staging areas in western Washington, as well as principal fall and winter harvest areas. Sampling areas will include north Puget Sound and coastal estuaries, including the Skagit Wildlife Area, Whatcom Wildlife Area, southwest Washington, and the Eastern Washington. We propose a sample design targeting a total of 200 birds, sampled during both the pre-season period and the hunting season (see Appendix 1).

Pre-season sampling will begin in late August and September using baited live traps or rocket nets, and will target mostly adult males, with fewer females and hatch year birds. Samples will also be obtained from hunter-shot pintails at existing mandatory check stations and/or field checks distributed throughout the hunting season. Pintails will be sampled through capture of live birds and directed collecting if quotas are not met using other methods.

Responsibility: WDFW (North Sound); USDA (Southwest Washington and Coast)

Secondary Species

Cackling Goose (Branta hutchinsii minima)

Background: Cackling geese that winter in southwest Washington mingle with brant and other species, potentially including Asian migrants, on the breeding grounds and fall staging areas. Approximately 150,000 cackling goose breed on the Yukon-Kuskokwim Delta (YKD) in western Alaska. The YKD is a primary stopover area for migratory birds arriving from Asia (e.g. Wrangel Island snow geese), and has a direct link to Washington migration and wintering areas.
Methods: Based on past data, most cackling geese in southwest Washington occur in Clark and Cowlitz counties. A total of 200 samples will be taken from cackling geese at hunter check stations in southwest Washington (see Appendix 1). The hunting season for cackling geese begins in November and runs through March 10 in this area.

Responsibility: WDFW

Secondary Dabbling Duck Species

Background: In order to determine opportunities to sample priority duck species during the hunting season, the Pacific Flyway Study Committee conducted an analysis on the distribution of band recoveries of Alaska-banded ducks (see Figure 1) and relative magnitude of duck harvest in Pacific Flyway states.

![Figure 1. Recoveries of ducks banded in Alaska (Mikal Moore, pers. comm.)](image)

Based on this analysis, pre-season sampling of mallards, and sampling of hunter-killed mallard and wigeon in western Washington were identified as secondary priorities. Wood ducks continue as a target species in 2009 based on results of 2006-08 sampling (USDA 2009), and will also be sampled during both the pre-season period and the hunting season. In addition to sampling hunter-killed mallard, wigeon and wood duck, pintail, green-winged teal, and shoveler will be collected to meet sampling targets.

Methods: We propose to sample a total of 1,300 secondary dabbler species, including 500 mallards, 800 from other dabbler species (see Appendix 1). Samples will be collected from live-trapping and hunter-killed birds.

Mallard: Mallards will be sampled before the hunting season using bait traps. Due to susceptibility of juvenile mallards to avian influenza, priority will be given
to sampling this age class during pre-season trapping. Hunter-killed mallards in
north Puget Sound, southwest Washington, and the north Columbia Basin will
provide additional samples. Hunter-killed samples will be distributed throughout
the hunting season.

Other Dabblers: Wood ducks will be sampled before the hunting season in the
Yakima Basin using bait traps, and collected from hunters later in the year.
Green-winged teal will be sampled before the hunting season in conjunction with
the live-sampling strategy for wood ducks. Green-winged teal, shoveler, and
wigeon will be sampled from hunter-killed birds during field checks in southwest
Washington, north Sound, and eastern Washington. Shovelers will mainly be
sampled at the Ridgefield NWR check station. Hunter-killed samples will be
distributed throughout the hunting season.

Responsibility: WDFW (North Puget Sound), USDA (Southwest and Eastern
Washington)

REFERENCES

Interagency HPAI H5N1 Early Detection Working Group. 2006. An early detection
system for HPAI H5N1 highly pathogenic avian influenza in wild migratory birds:
U.S. Interagency Strategic Plan. Unpubl. Final Rept. Report to the Department of
Homeland Security, Policy Coordinating Committee for Pandemic Influenza

Iverson, S.A., J.Y. Takekawa, S. Schwarzbach, C.J. Cardona, N. Warnock, M.A. Bishop,
G.A. Schirato, S. Paroulek, J.T. Ackerman, H. Ip, and W.M. Boyce 2008. Low
prevalence of avian influenza virus in shorebirds on the Pacific Coast of North

Pacific Flyway Council. 2006. Surveillance for early detection of highly pathogenic avian
influenza H5N1 in wild migratory birds: a strategy for the Pacific Flyway. Pacific
Flyway Council. [c/o USFWS], Portland, OR. Unpubl. rept. 13pp.+ appendices.

U. S. Department of Agriculture. 2009. Implementation plan for HPAI surveillance in
wild migratory birds in the United States. Unpubl. Rept. 15 pp. USDA, Ft. Collins,
CO.

Response to a Highly Pathogenic Avian Influenza Animal Emergency. Unpubl. Rept.
WSDA, Olympia, WA.
APPENDIX 1: WASHINGTON STATE 2009-10 AVIAN INFLUENZA SAMPLING TARGETS DRAFT

<table>
<thead>
<tr>
<th>DFW-W</th>
<th>July-Sept.</th>
<th>90</th>
<th>100</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFW-W</td>
<td>Oct.-Jan.</td>
<td>60</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>DFW-F</td>
<td>July-Sept.</td>
<td>200</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>DFW-F</td>
<td>Oct.-Jan.</td>
<td>100</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DFW</th>
<th>Subtotal</th>
<th>150</th>
<th>500</th>
<th>50</th>
<th>200</th>
<th>200</th>
<th>200</th>
<th>1300</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS</td>
<td>July-Sept.</td>
<td>10</td>
<td></td>
<td>50</td>
<td>60</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>Oct.-Jan.</td>
<td>40</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>140</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>Subtotal</td>
<td>50</td>
<td>150</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

DFW-W = WDFW - WILDLIFE SERVICES CONTRACT DFW-F = WDFW - USFWS CONTRACT

<table>
<thead>
<tr>
<th>WDFW</th>
<th>July</th>
<th>45</th>
<th>100</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>August</td>
<td>45</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>45</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>July</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>5</td>
<td>50</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIVE</th>
<th>Subtotal</th>
<th>100</th>
<th>300</th>
<th>50</th>
<th>60</th>
<th>510</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WDFW</th>
<th>October</th>
<th>20</th>
<th>30</th>
<th>30</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>December</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>January</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS</th>
<th>October</th>
<th>10</th>
<th>30</th>
<th>50</th>
<th>50</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUNT</th>
<th>Subtotal</th>
<th>100</th>
<th>200</th>
<th>150</th>
<th>200</th>
<th>200</th>
<th>200</th>
<th>1590</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ALL</th>
<th>TOTAL</th>
<th>200</th>
<th>500</th>
<th>200</th>
<th>200</th>
<th>200</th>
<th>200</th>
<th>2100</th>
</tr>
</thead>
</table>

DFW-W = WDFW - WILDLIFE SERVICES CONTRACT DFW-F = WDFW - USFWS CONTRACT
Appendix 2

Suggested Steps To Establish Morbidity/Mortality Surveillance/Response Programs

1. **Establish practices for routine, systematic, prospective mortality surveillance**
 A. Develop interagency teams for surveillance and investigation as appropriate
 B. Allocate funding to selected areas for enhanced mortality detection
 C. Identify primary and secondary candidate species in the surveillance area
 i. Based generally on reported historical mortality events
 ii. Primary candidate species for mortality surveillance are swans, grebes and diving ducks
 iii. Secondary emphasis should be placed on species utilizing the same habitat as that used by primary species, with an emphasis on other duck species and other waterbirds.
 D. Identify/map habitat areas associated with target species
 i. Use survey and inventory databases to identify concentration areas on a large landscape scale
 ii. Swan concentration areas are identified by consensus between state and federal waterfowl managers if harvest or survey numbers are not available.
 iii. Determine land ownership and access needs on private lands
 E. Determine best practice for systematically surveying target habitat area
 i. Monitoring efforts will be integrated with ongoing normal field operations to the greatest extent possible. This could include taking extra time to scan a site for sick or dead birds during population surveys, banding operations, maintenance activities, etc.
 ii. If additional assistance or special monitoring is deemed necessary for specific areas, the use of temporary/seasonal employees should be considered.
 iii. The emphasis is on actively searching for morbidity/mortality events in order to identify them as quickly after disease onset as possible
 iv. Because of the tendency of carcasses to drift and catch in vegetation, it is important to survey each location in a manner that affords visibility of potential carcasses.
 v. Possible survey practices could include vehicle routes, boat travel, ATV’s, foot travel, aerial surveys, etc.
 vi. Identify key locations to stop and scan areas using binoculars, spotting scopes, trained dogs, etc.
 vii. Remember that while geese and swans are highly visible, they may only be indicators of a larger disease event involving smaller birds that will require more effort to detect.
 viii. Request assistance from breeding bird surveys, Christmas bird counts, raptor surveys, etc., in searching for carcasses.
 ix. For states with contiguous or similar habitat encourage development of similar strategies among sites, to both maximize
probability of detection and enhance consistency of surveillance efforts

F. Establish a schedule for surveillance
 i. daily, weekly, etc,
 ii. Based on waterfowl density patterns throughout the year, two
 survey patterns are recommended;
 iii. During peak waterfowl months, all identified surveillance sites
 should be monitored at a minimum one day per week. Note that
 peak waterfowl densities may occur in one lengthy period or two
 distinct shorter time frames during migration.
 iv. During off-season times surveillance could be limited to one day
 per month, and/or may not include all sites, particularly if some
 locations are known to draw down.
 v. A minimum surveillance effort of one day per month is
 recommended for any site with waterfowl present.
 vi. Surveillance should continue until guidance or funding from
 federal agencies dictates discontinuation.

G. Determine protocols for collecting and shipping specimens
 i. establish contacts with state wildlife veterinarian
 ii. establish contacts with diagnostic laboratories

H. Establish standards for reporting surveillance effort
 i. develop identifiers for transects
 ii. Surveillance efforts need to be documented for funding purposes,
 regardless of whether or not carcasses are found. This should
 include location, method, duration, frequency and extent of effort.
 iii. log environmental conditions

2. Enhance Response to Mortality Events
 A. Conduct mortality investigation training in each state
 i. educate survey crews in HPAI epidemiology, sample collection
 and reporting protocols.
 B. Disease overview, history collection, investigation techniques
 i. Description of HPAI epidemiology,
 ii. clinical presentation
 iii. known or suspected high risk species groups.
 C. Sampling, preserving and shipping specimens
 D. Personal protection
 E. Highlight importance of mortality reporting
 F. Create DVD and other handouts to use away from training.
 G. Establish centralized or toll-free numbers for collecting reports
 H. Utilize state wildlife veterinarians to triage and prioritize reports of M&M
 events
 I. Identify other potential contacts within each state
 i. Agriculture
 ii. Public Health
 J. Work with state Public Health departments to ensure that target species
 submitted for WNV testing also get submitted for AI testing
3. Outreach

A. Identify target audiences
 i. Wildlife professionals including FWS refuges, field stations, state wildlife areas, regional and district offices, etc.
 ii. Other wildlife interest groups
 a. Universities
 b. bird watching groups
 c. Wildlife rehabilitators
 d. Partners groups
 e. Others
 iii. General public

B. Develop outreach materials appropriate for each group
 i. Distribute copies of State and National AI Surveillance Plans to appropriate field stations and internal offices
 ii. Develop 1-2 page color brochure “Be on the Lookout”
 iii. Update and distribute Hunter Handouts, AI fact sheets

C. Encourage publication of toll-free reporting numbers

D. Ask State Agencies to share education and training materials to keep message consistent and avoid duplication of effort.