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Abstract

The upper Snoqualmie River watershed (USRW) is located above an 82 m vertical barrier to anadromous fishes.
Main stem rivers and tributaries in the USRW contain wild populations of coastal and westslope cutthroat
trout, rainbow trout, and hybrids among these species. Releases of hatchery-raised strains of Pacific trout were
widespread throughout the watershed between 1930’ and 1990’s and continue in alpine lakes that drain into
tributaries and main stem rivers. Trout identified in the field as rainbow, coastal cutthroat, westslope cutthroat,
and hybrids were sampled in main stem and tributary habitats in the USRW and analyzed to describe the vari-
ous species and lineages inhabiting the watershed and the magnitude of introgression by hatchery strains of
Pacific trout. Fish were genotyped at seven microsatellite DNA loci and 96 single nucleotide polymorphism
loci (SNPs) and results differentiated between putative native and hatchery strains of coastal and westslope
cutthroat, rainbow and hybrids between all of these species. Hybrids were composed of first generation types
(F1) and descendants of hybrids (beyond F1 or introgressed). Many samples contained a mixture of native and
hatchery strains indicating that hatchery-raised trout have introgressed into the populations and even dominate
the genetic structure in discrete segments of the watershed. Dominant lineages (native or hatchery ancestry)
were generally homogenous within each fork but varied between the forks, indicating that some native sub-
populations were probably more vulnerable to displacement by hatchery-raised species or the area was unoc-
cupied prior to hatchery introductions. Current spatial distribution of the genetic composition of Pacific trout
revealed possible causal mechanisms of the distribution of salmonids during and after the last glacial recession
(c. 10,000 to 15,000 years before present).
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Introduction

The Snoqualmie River Game Fish Enhancement Plan (Plan) is a comprehensive inventory and ecological study
of the fishery resources in the upper Snoqualmie River watershed (USRW). The USRW consists of all waters
draining the Snoqualmie River basin upstream of the Snoqualmie Falls Hydroelectric Project at Snoqualmie
Falls, which is owned and operated by Puget Sound Energy (PSE). In 2004 the Federal Energy Regulatory
Commission (FERC) issued a new license for the hydroelectric project. Article 413 of the license required PSE
to file a final Plan to the FERC for approval and allocate funds to implement the Plan. PSE developed the final
Plan in consultation with the Washington Department of Fish and Wildlife (WDFW) and submitted it to the
FERC (Puget Sound Energy 2005). The Plan was approved by the FERC in December 2006 and in 2007 PSE
contracted WDFW to conduct the Plan (Thompson et al. 2011).

One of the goals of the Plan was to determine trout species composition and distribution in the water-
shed. Pacific trout species known to inhabit the USRW include coastal cutthroat (CCT: Oncorhynchus clarki
clarki), rainbow (RBT: O. mykiss), westslope cutthroat (WCT: O. clarki lewisi), and hybrids among these species
(Onxx). Bull trout (Salvelinus confluentus) is the only char species endemic to the inland Central Puget Sound
region, but none were found during this study (Thompson et al. 2011). Over the years anglers have reported
sightings of bull trout in the USRW; however, none were observed during a previous study designed specifically
to detect their presence in the USRW (Berge and Mavros 2001).

Coastal cutthroat and rainbow trout are the most likely native trout species in the USRW, as westslope are
known to be native only in drainages east of the Cascade Mountains. Various species of hatchery-raised trout
(CCT, RBT, and WCT) were released into water bodies of the USRW between the 1930’s and 1990’s (Table
1). Itis likely that additional trout were stocked prior to 1930 (Bob Pfeifer, personal communication). Plants
of hatchery-raised CCT and RBT continue presently, but are limited to alpine lakes or water bodies that do
not connect directly with main stem rivers (Table 1). Coastal cutthroat are the most abundant species of Pa-
cific trout in the USRW followed by RBT, and Onxx. Accurate field differentiation between CCT, RBT, and
Onxx is difficult in discrete segments of the USRW (Thompson et al. 2011). Genetic analysis of individuals
sampled throughout the watershed can help field biologists describe species composition and can help identify
the extent of introgression or hybridization with putative native species. Analysis of genetic samples collected
on a landscape scale can help managers identify where various lineages (native or hatchery) occur so appropriate
management actions can be prioritized in specific reaches.

The objectives of this study were to identify the various Pacific trout species and to describe species and
lineage composition of Pacific trout on a large spatial scale in the USRW. Genetic samples were spatially dis-
tributed among main stem rivers and tributaries in the USRW to facilitate a watershed-scale understanding of
species composition.

Study Area

Upper Snoqualmie River Watershed

The USRW is composed of the headwater portions of the Snoqualmie River above Snoqualmie Falls, an 82 m
vertical barrier that limits anadromous fish distribution to the lower watershed. The Snoqualmie River below
Snoqualmie Falls converges with the Skykomish River near the city of Monroe to form the Snohomish River,
the second largest river system flowing into the Puget Sound (Figure 1). Major river systems of the USRW in-
clude the North, Middle and South forks, and the mainstem of the Snoqualmie River above Snoqualmie Falls.
Each of the Snoqualmie forks originates on the west slopes of the Cascade Mountains, flowing in a general west-
erly direction through varied landscapes until they converge as the mainstem Snoqualmie River. The mainstem
Snoqualmie continues downstream for about 6 km before plunging over Snoqualmie Falls (Figure 2).
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The headwater portions of each fork originate high on the Cascade Crest in the Alpine Lakes Wilderness
Area. In a landscape sculpted by alpine glaciers (c. 20,000 ybp), headwaters consist of confined, turbulent,
high gradient habitats with geologic barriers that isolate fish into sub-populations (Figure 2). Downstream of
headwaters the steep stream channels converge with more moderate gradient terraced u-shaped montane valley
bottoms. Gradient is heterogeneous along montane valley bottoms as low gradient segments yield to exposed
bedrock or boulder-cascade reaches that isolate fish (e.g., Big Creek Falls in the North Fork and Weeks Falls in
the South Fork). Each fork is low to moderate gradient downstream of the most major geologic barriers (Black

Canyon in the North Fork, Twin Falls in the South Fork, and Dingford Canyon in the Middle Fork).

Prior to the most recent glaciation (c. 14,000 ybp) the upper Cedar River basin drained into the Sno-
qualmie basin. However, the Cedar River was diverted south and the major geologic barriers in each fork of the
Snoqualmie were formed after the most recent encroachment and retreat of the Vashon Lobe of the Cordilleran
Ice Sheet, as glacial moraines (e.g., Grouse Ridge) were formed creating lakes behind large ‘earthen dams’ and
bedrock outcroppings (e.g., Twin Falls) were exposed. The Vashon Lobe blocked the pathway of the Snoqualmie
River and a large ice-marginal lake occupied the lower portion of the basin just upstream of Snoqualmie Falls
as the Vashon Lobe slowly retreated. This lake received streamflows from most, if not all, northern and central
Puget Sound basins (Skagit, Stillaguamish, Skykomish, etc.) as they converged with and flowed south along the
eastern border of the ice sheet. The original outlet for the ice marginal lake was through the Cedar Channel near
Rattlesnake Lake, but as the Vashon Lobe retreated the lake level dropped and the Snoqualmie River carved a
new channel that flowed over Snoqualmie Falls (Figure 2).

Each fork and the mainstem Snoqualmie River were divided into river segments (Figure 3). River segments
corresponded with discrete channel types (sediment transport or deposition), geography, trout abundance, and
trout species composition (Thompson et al. 2011). Sample reaches were located within river segments and
spatially explicit trout genetic composition was analyzed by comparing trout genetics between river segments.

Materials and Methods

Data collection

Sample reaches were distributed across river segments (Figure 3) and fish were sampled randomly from length
groups in sample reaches (0-99, 100-149, 150-229, 230-299, 300-379, 380+ mm total length - TL). Size of
sample reach ranged between 50 m and 8 km in length and from shallow margins to the entire wetted width
depending on habitat size. Fish were captured between June 2009 and October 2010 using one of two methods:
1) single pass backpack electrofishing without blocknets (sezs# Bateman et al. 2005); or 2) wade- or float-based
angling. Wade-based angling was used in conjunction with backpack electrofishing in reaches containing habi-
tats too deep for effective backpack shocking. Captured fish were held in containers of cold, fresh, aerated water
with cover to reduce stress. Fish were anesthetized using 6 ml of 10g:1 L solution MS 222 in 7.5 L of fresh
water, and were identified to species, measured for total and fork lengths (mm), and weighed (0.1 g). Lower
caudal fin samples were distributed proportionally among length frequency groups, and egg and alevin samples
were retained during spawning surveys in main stems and tributaries during winter and spring of 2010. Tis-
sue samples for DNA extraction were placed directly in vials containing 95% ethanol. Samples were grouped
into two collections with WDFW codes 091] and 09IK but field collections were not segregated by these codes
consistently (field identifications presented in Table 7). Most of the cutthroat trout were in collection 091] and
most of the rainbow trout were in collection 091K, but each collection contained both species types. To help us
distinguish descendants of introduced hatchery cutthroat trout from possible native cutthroat trout we included
samples of two of the hatchery cutthroat trout collections [Lake Whatcom broodstock (coastal cutthroat trout)
housed at Tokul Creek Hatchery (WDFW code 01NZ); Twin Lakes broodstock (westslope cutthroat trout)
housed at Twin Lakes Hatchery (WDFW code 99GB)] as well as a native coastal cutthroat trout collection from
Cedar River in South Puget Sound (WDFW code 05BB).
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To further identify trout origins, we compared the USRW trout to archived trout data from WDFW. The
archived data had five microsatellite loci in common with contemporary data. Analyses were conducted to pur-
sue signals indicating that some of the Snoqualmie trout samples may have had ancestry in hatchery rainbow
trout broodstocks that were not represented in the baseline samples (listed above) that had been genotyped with
microsatellites and SNPs. The archived data included rainbow trout from the Puget Sound basin (Puyallup,
Cedar, Green rivers and Chester Morse Lake) and hatchery rainbow trout broodstocks planted throughout
Washington State (Eells Springs, South Tacoma, Goldendale, and Spokane hatcheries). The archived data also
included coastal cutthroat trout from Puget Sound (Bear and Minter creeks and a collection from Lake Wash-

ington) and westslope cutthroat trout from Pend Oreille basin (Sullivan Lake, Sullivan and Gold creeks).
Laboratory analyses

Genomic DNA was extracted from tissue samples using Clone-tech® extraction kits. Trout samples were
genotyped at seven microsatellite loci (One-108, Ots-103, Omy-77, Ots-1, Ots-3M, Ogo-3, and Omm-1138)
which had large differences in allelic distributions between cutthroat trout and rainbow trout in Marshall et al.
(2006). Microsatellite alleles were PCR-amplified using fluorescently labeled primers. PCRs were conducted in
96 well plates in 10 pl volumes employing 1 pl template with final concentrations of 1.5 mM MgCl, 200uM of
each dNTDP, and 1X Promega PCR buffer. The following microsatellite loci were used at the following concen-
trations (concentration in uM after locus name): One-108 [0.075], Ots-103 [0.037], Omy-77 [0.075], Ots-1
[0.08], Ots-3M [0.05], Ogo-3 [0.07], and Omm-1138 [0.08]). After initial two minute denature at 94°, there
were 3 cycles consisting of 94° denaturing for 30 seconds, 60° annealing for 30 seconds, at 72° extension for 60
seconds. These were followed by 30 cycles with the same parameters but the annealing temperature was dropped
to 50° and then there was a final 10-minute extension at 72°. Samples were run on an ABI 3730 automated
DNA Analyzer and alleles were sized (to base pairs) and binned using an internal lane size standard (GS500Liz
from Applied Biosystems) and GeneMapper software (Applied Biosystems).

Trout samples were also genotyped at 96 single nucleotide polymorphism loci (SNPs, see Table 2 for list)
through PCR and visualized on Fluidigm EP1 integrated fluidic circuits (chips). Twenty of the SNP loci were
developed to discriminate among trout species and 76 of the SNP loci have been used to identify population
structure and other genetic attributes of rainbow trout in Puget Sound. Protocols followed Fluidigm’s recom-
mendations for TagMan SNP assays as follows: assay loading mixture contains 1X Assay Loading Reagent (Flu-
idigm), 2.5X ROX Reference Dye (Invetrogen) and 10X custom TagMan Assay (Applied Biosystems); sample
loading mixture contains 1X TagMan Universal PCR Master Mix (Applied Biosystems), 0.05X AmpliTaq Gold
DNA polymerase (Applied Biosystems), 1X GT sampling loading reagent (Fluidigm) and 2.1 pL template
DNA. Four pL assay loading mix and 5 pL sample loading mix were pipetted onto the chip and loaded by
the IFC loader (Fluidigm). PCR was conducted on a Fluidigm thermal cycler using a two step profile. Initial
mix thermal profile was 70°C for 30min, 25°C for 5 min, 52.3° for 10 sec, 50.1°C for 1 min 50sec, 98°C for
5 sec, 96°C for 9 min 55 sec, 96°C for 15 sec, 58.6°C for 8 sec, and 60.1°C for 43 sec. Amplification thermal
profile was 40 cycles of 58.6°C for 10 sec, 96°C for 5 sec, 58.6°C for 8 sec and 60.1°C for 43 sec with a final
hold at 20°C. The TagMan assays were visualized on the Fluidigm EP1 machine using the BioMark data col-
lection software and analyzed using Fluidigm SNP genotyping analysis software. All data were scored by two
researchers.

Statistical analyses

Since the WDFW Molecular Genetics Lab is transitioning from using microsatellite loci to using SNP loci for
genetic analyses, we used the program ARLEQUIN3.5 (Schneider et al. 2000) to generate several genetic sta-
tistics to assist our comparisons of the loci. We used ARLEQUIN to calculate the amount of genetic variance
among collections at each locus, to estimate whether the variance was significant and to identify loci that had a
lower or higher amount of genetic variance than expected (balancing or directional selection at loci, respectively)
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using the F . outlier test. Most of our statistics assume loci are selectively neutral: a locus under balancing
selection would have less divergence among populations than expected, often due to heterozygote advantage
or frequency-dependent selection and a locus under directional selection would have more divergence among
populations than expected, often due to selective differences among sampling locations. We used a hierarchi-
cal analysis of molecular variance (AMOVA, Excofher et al. 1992) to calculate the amount of genetic variance
among collections, among individuals within collections and within individuals using three permutations of the
dataset: just the microsatellite loci, just the SNP loci and with both locus sets combined.

Trout from the USRW were assessed to determine their species identity and their status; pure, hybrid or
introgressed (hybrid beyond the first generation). In addition to species identification and genetic status, we
identified whether trout were descendants of introduced out-of-basin hatchery cutthroat trout or rainbow trout
or if mixture was between cutthroat trout variants or between cutthroat trout and rainbow trout or included
some component of hatchery rainbow trout. We used the Bayesian analysis implemented in the program
STRUCTURE2.3 (Pritchard et al. 2000) to estimate individual genetic ancestry and identify putative hybrids
and introgressed individuals. STRUCTURE sorts individuals (or portions of individuals if they are hybrids)
into a number of hypothetical clusters (K) or groups in order to achieve Hardy-Weinberg equilibrium and link-
age equilibrium (or minimize disequilibrium) in the clusters or groups — individuals that are genetically similar
to each other group together in a cluster and the clustering can be broad scale (eg. species level) or fine scale
(population level). Hybrid or introgressed individuals will have ancestry in two or more genetic clusters. The
program outputs a likelihood value for the number of clusters or genetic groups, given the dataset. The likeli-
hood value reaches a maximum or asymptote when the program has detected the maximum number of genetic
clusters it can identify in the dataset. We set the number of clusters or possible populations at 2-7: at K = 2 we
hypothesized that the dataset would divide into a cutthroat trout and a rainbow trout group and at higher K
values the dataset would divide into cutthroat trout and rainbow trout subspecies and populations.

We used the program GENETIX (Belkhir et al. 2004) to view differences among individual samples and
collections and to view possible interspecific hybrids. GENETIX performs a factorial correspondence analysis
(ECA), which generates axes that describe the maximum genetic variation among individuals and plots indi-
viduals along these axes according to their genotype. Individuals that are genetically similar plot near each other
and individuals that are genetically different plot distantly from each other. Hybridization or introgression is
hypothesized when individuals from one species plot within or towards the region occupied by the other species
or genetic group (eg. hatchery cluster). This program also provides insights into individuals categorized pheno-
typically as one species that are genetically more similar to a different species since they will plot near genetically
similar individuals regardless of phenotype.

Because of the long history of hatchery rainbow trout planting and a lack of detailed information on hatch-
ery broodstocks we conducted a secondary analysis with a subset of the microsatellite data (five loci) generated
for this project. In the secondary analysis we compared the genotypic subset to archived WDFW data that
included four hatchery rainbow trout broodstocks (Spokane, Goldendale, Eells Springs, South Tacoma) and
native Puget Sound rainbow trout (Green, Cedar, Puyallup rivers and Chester Morse Lake) and cutthroat trout
(Cedar, Bear, Minter creeks) populations. The archived data had five microsatellite loci per individual in com-
mon with the contemporary data and provided insights that were unavailable using only contemporary data.
We conducted the same STRUCTURE and FCA analyses with the five loci in common.

Results

Genotyping success varied among individuals and markers. Nine individuals collected in the Snoqualmie basin
failed at most loci and were excluded from analyses — failures are usually a result of degraded DNA from decayed
tissues or too little DNA from too small of a sample. The microsatellite loci all worked in 80% or greater of
the samples. For the SNP markers, 11 loci generated no data and 9 loci produced data for less than half the
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samples (See Table 3). These SNPs were excluded from further consideration. Genetic variance among collec-
tions ranged from a high of 86% at species ID locus ASpI005 to -0.5% at species ID locus ASp1012 (Table 4).
Negative values indicate that most of the genetic variance is among individuals and there is little to no variance
among collections—the locus has little or no utility for distinguishing among populations or species. While
most trout were fixed for a single allele at this locus (there are usually two alleles at a SNP locus), the alternate
allele was fixed in the westslope cutthroat trout broodstock collection from Twin Lakes Hatchery (Appendix I).
In most of the other species ID SNPs allele frequencies were different between cutthroat trout and rainbow trout
collections (see Appendix I). Since many genetic statistics assume that loci are neutral, we tested for neutrality
in these new SNP loci and the microsatellite loci. Four markers generated signals of variance that was less than
(One-108) or greater than (AOmy015, ASp1004, ASp1005, and ASp1009) expected, suggesting these loci may
be under balancing or directional selection, respectively (Figure 3). Selected loci are ones where heterozygous
individuals may be favored and survive to reproduce (balancing selection) such that both alleles are at nearly
equal frequencies. For loci under directional selection alternate alleles are favored under different selection
regimes or environmental conditions such that one allele is at a high frequency in one environment and the
alternate allele is at a high frequency in a different environment.

The AMOVA found high genetic variance among collections and among individuals with all combinations
of the genotypic data: with microsatellite loci only, with SNP loci only and with the two marker types combined
(Table 5). Genetic variance among collections was highest using only SNP loci, likely due to the high allele fre-
quency differences at the species ID SNPs. Genetic variance among individuals was also highest using only SNP
loci, possibly also driven by the species ID SNPs. Genetic variance within individuals was lower for SNPs. This
was expected since SNPs have two alleles per locus as opposed to over 30 alleles at some microsatellite loci and
the species ID SNDPs are expected to be nearly or completely fixed in single-species collections. Examining the
partitioning of genetic variance (among populations, within populations and within individuals) allows us to
identify patterns of genetic variation (eg. if there is significant genetic variance between fish collected from two
tributaries that tells us that there is non-random gene flow among the tributaries and that there is geographic
structure to the genetic variation).

The STRUCTURE analysis identified cutthroat trout and rainbow trout in the USRW trout samples, as
well as some hybrids or introgressed individuals (Figure 3a and Figure 3b). In this analysis, the user tells the
program to divide the data set into a number of genetic groups. The program sorts through the data, without
knowledge of the origin of the sample, and groups the data into clusters that minimize Hardy-Weinberg dis-
equilibrium and linkage disequilibrium (Hardy-Weinberg and linkage equilibrium are genetic characteristics of
unmixed groups). Thus, individuals (or portions of an individual if they are introgressed) that are collected in
a single location may be classified into different genetic groups if their ancestry is from different genetic groups.
For this study, we were interested in genetic identities of trout of unknown origin, so we included trout of
known origin that may have been planted in the basin (hatchery cutthroat trout) or may share recent common
ancestry with native Snoqualmie basin trout (Cedar River cutthroat trout) to explore which genetic group indi-
vidual USRW trout were most similar to. We used the program as a hierarchical analysis that looked at genetic
identity from the species level to the population level.

For this study, we first had the program divide the data into two groups and these groups corresponded to
a cutthroat trout group and a rainbow trout group (Figure 3a at K = 2). In that figure, each individual fish is
represented by a bar of color, blue corresponds to cutthroat trout ancestry and tan to rainbow trout ancestry. If
an individual is of single ancestry, it will have a single color in its color bar. If an individual is of mixed ancestry
it will have two colors in its color bar, with the proportion of each color corresponding to the percentage of
ancestry in the two groups, here cutthroat trout and rainbow trout. The reader can see that samples collected
as phenotypic cutthroat trout and rainbow trout in the USRW were mostly genetically cutthroat trout and
rainbow trout, respectively (see Table 7 for phenotypic and genetic identification). However, some individuals
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identified phenotypically as one species identified genetically as the other species and several individuals ap-
peared to have mixed ancestry. This is also seen in the cutthroat trout collection from the Cedar River where a
few rainbow trout (tan color bars among the blue) were known to have been included in that collection.

At K = 3 (Figure 3a), the cutthroat trout cluster subdivided into coastal (blue) and westlope (green) cut-
throat trout clusters. With this increased definition, a few of the individuals identified genetically as cutthroat
trout in the Snoqualmie rainbow trout collection now identify as cutthroat trout with westslope ancestry (green
individuals within the Snoqualmie rainbow trout collection). So the resolution of the analysis is at the species
and subspecies level.

At K = 4 (Figure 3a), the coastal cutthroat trout cluster subdivided into the Puget Sound coastal cutthroat
trout (blue) and coastal cutthroat trout from USRW (purple). We suspect that the coastal cutthroat trout clus-
ter identified in the USRW collection (purple in Figure 3a) is a native coastal cutthroat trout population. The
USRW is above a barrier falls and native trout above the falls were expected to be genetically divergent from oth-
er coastal cutthroat trout from Puget Sound since there has been no gene flow across the barrier falls. However,
some of the Snoqualmie cutthroat trout had ancestry in the Puget Sound coastal cutthroat trout cluster (blue
individuals) suggesting that they were descendants of hatchery cutthroat trout (Lake Whatcom broodstock)
planted in the basin (see discussion below). Most of the cutthroat trout identified in the USRW rainbow trout
collection shared their ancestry with the Snoqualmie cutthroat trout (purple individuals in the USRW rainbow
trout collection) and a few were hatchery cutthroat trout origin (blue individuals). Now the resolution of the
analysis reaches to the population level for cutthroat trout.

At K =5 (Figure 3a), the Puget Sound coastal cutthroat trout cluster subdivided into North (Lake Whatcom
-blue) and South (Cedar River - red) Puget Sound cutthroat trout and the USRW cutthroat trout (SnoqOcl in
Figure 3a) remained in its own cluster (purple). Some of the Puget Sound cutthroat trout identified at K = 4 in
the USRW cutthroat trout and rainbow trout collections are more similar to the south Puget Sound cutthroat
trout. This may indicate that two hatchery cutthroat trout broodstocks were planted in the USRW or that there
are two native cutthroat trout populations in the USRW.

At K = 6 (Figure 3a and Figure 3b), the rainbow trout cluster subdivided into two clusters that we labeled
“Snoqualmie 1 and Snoqualmie 2”, tan and orange, respectively. We suspected that one of these clusters might
be native rainbow trout and the other might be derived from hatchery rainbow trout planted in the basin. In
Figure 3b we break down the K = 6 plot into its clusters to more easily see the distributions of ancestries in
each collection. Each different color represents a different genetic group (cluster) identified by the analysis and
these are named by the most common known member of the genetic group; eg. the first cluster (identified by
blue color) is occupied by Lake Whatcom cutthroat trout, a known cutthroat trout broodstock stocked in the
USRW;, and several trout from the USRW. The USRW trout were of unknown ancestry and we hypothesized
that these were derived from Lake Whatcom broodstock since the analysis grouped them in the cluster occupied
by Lake Whatcom cutthroat trout and this broodstock had been planted in the basin. This breakdown into
individual clusters allows the viewer to easily see whether fish are of one type—have pure ancestry (one color in
color bar)—or if they are mixed ancestry (more than one color). One can also see that there are some USRW
individuals in the Lake Whatcom Ocl cluster, a few more individuals in the Cedar Ocl cluster, three individuals
in the Twin Lakes Ocl cluster (note: these particular fish had been field-identified as westslope cutthroat trout),
but that most USRW trout cluster in their own cutthroat trout (SnoqOcl) and rainbow trout (SnoqOmy1, Sno-
qOmy?2) clusters. This breakdown plot also shows more clearly the division among the rainbow trout collected
in the USRW (SnoqOmy1 and SnoqOmy?2).

We explored further the two rainbow trout groups identified in the USRW rainbow trout collection, and
considered the possibility that the USRW rainbow trout had native and hatchery ancestry. We conducted a
second STRUCTURE analysis in which we included archived data from hatchery rainbow trout that may have
been planted in the basin as well as some native rainbow trout from Puget Sound (results not shown). This data
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was from several years ago with a mostly different suite of microsatellite loci. There were five loci in common
with the contemporary data such that the analysis had less power to resolve genetic differences at the population
level, but was still informative for the origins of the rainbow trout in the USRW. This analysis yielded insights
into the identity of the two Snoqualmie rainbow trout groups: the “SnoqOmy1” rainbow trout group in Figures
4a and 4b shared ancestry with hatchery rainbow trout, in particular the broodstock from Goldendale Hatch-
ery, suggesting that they were derived from hatchery rainbow trout. Marshall et al. (2006) similarly found that
rainbow trout in the upper Cedar River from Chester Morse Lake were derived from exotic hatchery rainbow
trout. The rainbow trout broodstock housed at Tokul Creek Hatchery since 1974 were “Mt. Whitney” strain
that had been reared at Goldendale Hatchery during their history (Crawford 1979). The “SnoqOmy2” rainbow
trout group in Figures 4a and 4b shared ancestry with native rainbow trout from the Cedar River, suggesting
that they were native rainbow trout.

We used the STRUCTURE results to identify genetic origins of individual USRW trout (Table 6). Genetic
identities are tabulated with field data in Table 7. Several USRW cutthroat trout and some isolated trout col-
lected as rainbow trout clustered with the Cedar River cutthroat trout in the STRUCTURE analysis and were
identified as “Cedar cutthroat” in Table 6 and Table 7. These may be cutthroat trout from a hatchery brood-
stock that had been planted in both Cedar and Snoqualmie rivers or another native cutthroat trout population
founded from common ancestors. However, only Lake Whatcom-origin coastal cutthroat trout broodstock
are recorded for Tokul Creek Hatchery (Crawford 1979), which was a main source of hatchery cutthroat trout
planted in USRW. Crawford (1979) describes another coastal cutthroat trout broodstock developed for intro-
duction in Puget Sound tributaries that had origins in the Stillaguamish and Nooksack rivers. This broodstock
would likely be genetically more closely related to Lake Whatcom broodstock from North Puget Sound (rather
than the Cedar River cutthroat trout if they are a native population) and there are no records of planting this
other broodstock in USRW. (Note: the STRUCTURE analysis was conducted also including cutthroat trout
collections from Minter and Bear creeks and Lake Washington, all from South Puget Sound. The Cedar River
cutthroat trout [and some of the Snoqualmie cutthroat trout] grouped with these populations. This suggests
either that the “Cedar” cutthroat trout are a native South Puget Sound cutthroat trout population or (less likely)
that the same hatchery cutthroat trout were introduced in all these basins.) At this time we lack details on hatch-
ery broodstocks planted in USRW (current information is mostly limited to numbers of hatchery fish without
identifying broodstock) to examine the relationship between Cedar and Snoqualmie cutthroat trout and merely
present these ideas based on the data available to this study.

The STRUCTURE analysis also suggested that several fish from USRW had mixed ancestry. The mixtures
included several combinations such as a mix of hatchery and wild cutthroat trout (eg. Lake Whatcom Ocl and
Snoqualmie Ocl), a mix of species with native ancestry (eg. Snoqualmie Ocl and Snoqualmie Omy2), or a mix
of species and hatchery and wild ancestries (eg. Lake Whatcom Ocl and Snoqualmie Omy?2).

The factorial correspondence analysis (FCA) from GENETIX supported the results from the STRUC-
TURE analyses. Individual fish plot in the genetic space created by axes that explain the most genetic variance
in the data set. The first axis has the greatest genetic variance and cutthroat trout and rainbow trout separate
along that axis (Figure 4). The separation is somewhat difficult to see since there is a continuum of distribution
for the USRW trout. This continuum is due to mixing within the USRW collections in that some rainbow trout
were identified as cutthroat trout or included in the collection that was predominantly cutthroat trout and vice
versa. 'There was also genetic mixing within individuals since STRUCTURE suggested that several individuals
from both USRW collections were hybrids or introgressed (had ancestry from both species). The cutthroat trout
separate along the second axis and three individuals from the USRW rainbow trout collection plot with the
westslope cutthroat trout from Twin Lakes Hatchery. STRUCTURE also identified these individuals as Twin
Lakes Hatchery origin and these fish were identified in the field as westslope cutthroat trout.
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We saw no evidence in the FCA for golden trout (Oncorhynchu aguabonita) among the USRW trout. In
this type of analysis, fish with very different genetic profiles, such as golden trout or brook trout (Salvilinus
fontinalis), would separate from all other fish in the plot. However, all fish clustered with either the rainbow
trout or the cutthroat trout, suggesting that there were no golden trout or fish with partial golden trout ancestry.

We conducted the FCA with the archived WDFW data (five microsatellite loci) described above to gain
more insights into genetic relationships and the ancestry of the USRW trout. Figure 5a shows the FCA with a
plot of only the collection centers (the genetic information is collapsed into the center of the genetic distribu-
tion for each collection). In Figure 5a, the USRW 091] (mainly cutthroat trout) collection center is associated
with other coastal cutthroat trout collection centers and the USRW 091K (mainly rainbow trout but at least
30% cutthroat trout) collection center is between the coastal cutthroat trout and the rainbow trout. This place-
ment reflects the mix of rainbow trout and cutthroat trout in the USRW 091K trout collection suggested in the
STRUCTURE analysis. Figure 5b and Figure 5c show the individual USRW 091] and 09IK trout, respectively,
plotted in relation to the collection centers. This makes it easier to see that there was a mix of species in both
USRW collections, especially in the 09IK collection.

Longitudinal and inter-basin patterns in species composition:

North Fork Snoqualmie River

In the upper North Fork a majority of the trout lineage matched pure Lake Whatcom hatchery coastal cut-
throat (85%). In the Lakebed segment only three trout were sampled, but each contained different genetic
backgrounds. None were pure native ancestry, but one matched native O. mykiss genetic ancestry. From the
downstream border of the Lakebed segment downstream to the confluence with the Middle Fork a majority
of samples matched hatchery-lineage rainbow trout (69%). However, the presence of pure native Snoqualmie
coastal cutthroat trout (Snoq. O. clarki) increased in the Three Forks segment near the confluence with the
Middle Fork (Figures 6 and 7).

Middle Fork Snoqualmie River

In the upper Middle Fork only four trout were sampled in the Hardscrabble reach, but all were mixed native
and hatchery trout genetic ancestry (Table 7). Downstream of Hardscrabble to the confluence with the North
Fork the majority of trout matched pure native coastal cutthroat trout genetic lineage (76%, Snoq. O. clarki;
Figures 6 and 7).

South Fork Snoqualmie River

Samples from the Denny Creek segment of the upper South Fork (7 = 4) were all pure or hybridized westslope
cutthroat genetic lineage, suggesting they were derived from planted hatchery fish. No samples obtained in the
upper and middle South Fork matched pure native Snoq. O. clarki. Conversely, most matched a pure genetic
lineage of native Cedar O. clarki (29%), Cedar O. mykiss (29%) or hybridized Cedar O. clarki | O. mykiss (20%).
The Asahel Curtis segment of the upper South Fork and Tinkham segment of the middle South Fork contained
the highest proportions of pure Cedar O. clarki (62%) and hybridized Cedar O. clarki /O. mykiss (19%). No
coastal cutthroat trout of native lineage were sampled in the Weeks Falls and Grouse Ridge segments, but hybrid
Cedar O. clarki |O. mykiss (21%) and pure Cedar O. mykiss (50%) represented the majority of genetic samples
in those segments. A few mixed native/hatchery rainbow and coastal cutthroat trout were also sampled in these
segments (25%). In the lower South Fork downstream of Twin Falls genetically pure hatchery rainbow trout
were sampled (8%) as were pure native rainbow trout (Cedar O. mykiss, 16%) along with hybrid rainbow and
coastal cutthroat trout (Snoq. O. clarki and Cedar O. clarki /Cedar O. mykiss, 18%). Mixed native-lineage
coastal cutthroat trout (Snoq. O. clarkil Cedar O. clarki, 5%) were sampled in the lower South Fork as were
hatchery/ native mixed coastal cutthroat (5%) and hatchery/ native mixed hybrids (13%). Between the Sallal
Prairie segment and the North Bend - Three Forks segments the proportion of genetically pure native coastal
cutthroat (Snoq. O. clarki) increased (7% v. 50%, Figures 6 and 7).
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Mainstem Snoqualmie and the Three Forks segments

In the three forks segment of each fork numbers of pure native coastal cutthroat increased and this pattern con-
tinued into the mainstem Snoqualmie River. A majority of samples consisted of pure Snoq O. clarki (Figures

6and 7).

Discussion

The trout collected in the USRW are a complex mix of native coastal cutthroat trout, native rainbow trout,
introduced hatchery rainbow trout, introduced hatchery coastal and westslope cutthroat trout, and fish with
mixed hatchery and wild ancestry of both species. Although golden trout were planted in the system, we found
no evidence suggesting that the collection included golden trout. We identified native trout by comparing
USRW trout genetically to local native trout populations and to hatchery rainbow and cutthroat trout that had
been stocked in the region. Native Snoqualmie cutthroat trout were genetically more similar to native South
Puget Sound cutthroat trout than to hatchery cutthroat trout whose original broodstock was from North Puget
Sound. Further, the Snoqualmie cutthroat trout were distinct from other South Puget Sound cutthroat trout,
indicating that they were restricted to the Snoqualmie River. Native Snoqualmie rainbow trout were also dis-
tinct in comparisons to hatchery and native Puget Sound rainbow trout.

North Fork Snoqualmie River

The majority of trout in the upper and middle North Fork sections were of hatchery origin, which might suggest

that native trout production is inherently limited in these sections. We found weak genetic signals of native O.

clarki and O.mykiss in individuals sampled from these sections, but native genetic signals were overwhelmed by
hatchery genetic signals. Habitat in the Calligan and Black Canyon river segments seem to be the least diverse

as off-channel habitat is more limited compared to other segments in the USRW (Thompson et al. 2011). The

combination of low production and a lack of habitat diversity may have rendered native populations more

vulnerable to colonization by introduced hatchery lineages. Hatchery fish introduced in multiple sequential

plantings may have been relatively unchallenged if there were few native fish and little habitat complexity and

thus no specialized niche for native fish. In contrast, the lower North Fork contained a greater density of com-

plex habitat and higher trout production than other North Fork river sections (Thompson et al. 2011) and also
contained the only pure native trout encountered in the North Fork during this study.

Middle Fork Snoqualmie River

Native coastal cutthroat trout dominated the species composition and distribution in the Middle Fork (Sno-

qualmie O. clarki 74% of genetic samples). Some unidentified Pacific trout were sampled in the upper and
lower Middle Fork, but overall native coastal cutthroat trout were the most abundant game fish in all river sec-

tions of the Middle Fork. In contrast to the North Fork, the Middle Fork is productive and contains a highly
diverse system of habitats (Thompson et al. 2011). These two factors probably helped native trout outcompete

their introduced hatchery counterparts as high numbers of locally-adapted native fish already occupied the wide

array of habitats when less well-adapted hatchery-strains were being stocked into the Middle Fork.

South Fork Snoqualmie River

The South Fork contained the most diverse and complex composition of trout in the USRW. Westslope cut-
throat dominated most of the steepest portions of the upper South Fork, but essentially were limited to this
river section. Given that there are records for stocking this variety of hatchery cutthroat trout somewhere in
the South Fork, it is likely that these westslope cutthroat trout are descendants of hatchery fish stocked into
the South Fork or recruited from stocked alpine lakes. Since this variety has not been stocked lately, hatchery
fish may have found an unoccupied or partially occupied niche and were thus unchallenged or maybe able to
exploit the resources more effectively than the sparser native trout population, especially if they were stocked
multiple times.
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Downstream of the steep bedrock-cascade portion of the upper South Fork the channel levels off at the Asa-
hel Curtis segment, the area where a high proportion of sampled fish were identified as native coastal cutthroat
(Cedar O. clarki). The external characteristics of these cutthroat trout were distinct from cutthroat trout found
in all other river segments (Thompson et al. 2011). They lacked the typical narrow, elongated body, the yellow
body color, and did not have the pattern of spots that cover the entire body. Instead their spots were larger in
diameter and more clustered on the posterior end of the fish, much like spotting on a westslope cutthroat (see
Figure 24a). Native hybrids (Cedar O. clarkil Cedar O. mykiss) were also found in the Asahel Curtis segment
and native rainbow and hybrids were found in all South Fork river segments downstream of this point except
the lowermost Three Forks segment. The Grouse Ridge and Weeks Falls segments in the Mid SF were heavily
populated by native Cedar strain rainbow trout (50%) and hybrids (21%).

Interestingly, Snoqualmie-type native cutthroat and rainbow trout were limited to the lower portion of the
South Fork below Twin Falls and Cedar-type native cutthroat and rainbow trout were found above Twin Falls.
There is a causal mechanism for the high proportion of Cedar strain trout in the South Fork upstream of Twin
Falls suggested by the most recent glacial activity in the USRW (c. 14,000 ybp, see Figure 8). Before the Vashon
Lobe of the Cordilleran ice sheet protruded into the region now occupied by the USRW, the upper Cedar
River was the acting ‘South Fork’ of the Snoqualmie. After the Vashon Lobe retreated from the USRW it left a
number of moraines, one of which diverted the Cedar River away from the Snoqualmie basin. However, water
from the Cedar River drainage continued to flow through the moraine in the direction of the Snoqualmie basin
(Figure 8, MacKin 1941, Booth 1990, Bethel 2004, Fenner 2008). That porous moraine still exists and conveys
groundwater from Masonry Pool in the upper Cedar River watershed to its western slopes where the spring-fed
headwaters of Boxley Creek originate, eventually flowing into the South Fork Snoqualmie. Cedar River-type
trout probably migrated into the South Fork prior to the last Cordilleran encroachment, and Twin Falls, which
was exposed after the last Cordilleran retreat, subsequently blocked upstream colonization by Snoqualmie-type
trout. Thus, it seems the timeline of glacial activity and exposure of Twin Falls as a barrier to upstream migra-
tion were the main influences on the current distribution of native trout varieties in the South Fork, which was
also heavily stocked with both rainbow and cutthroat hatchery trout.

Hatchery fish introductions also appear to influence the genetic structure of trout in the lower South Fork.
For example, a private hatchery operates downstream of Twin Falls on Boxley Creek and large-bodied hatchery
rainbow trout that had escaped from holding ponds in the hatchery have been captured outside of the hatchery
recently (Thompson et al. 2011). Confirmed hatchery rainbow trout, identified by genetic analysis, were found
in this vicinity of the main stem South Fork and may have originated from this facility if trout commonly es-
cape. It is unknown how many trout escape from this facility or other water bodies that contain hatchery fish
(e.g., private ponds) but their genetic signature is found in the trout in the basin. More intensive genetic profil-
ing centered on these water bodies might be warranted to determine the degree of influx and introgression of
trout from the hatchery into the fishery.

146



Appendix 3: Snoqualmie trout genetic analysis WDFW 2011

Conclusion

The Puget Sound region has an interesting glacial and geologic history overlain by anthropogenic activities.
Pleistocene glaciers blocked drainages and formed temporary impoundment lakes that spanned present-day
watershed borders, creating dynamic interconnections among waterways and providing refuge lakes for native
trout. Tectonic activities further altered landscape features, forming barrier falls within basins. Europeans mov-
ing into the area added another layer of complexity by creating anthropogenic barriers (e.g., culverts) and by
planting hatchery fish. Further examination of location and genetic identities of trout in relation to detailed
hatchery stocking history will inform fish managers on the impact of hatchery planting on native fish and the
persistence of native fish in the Upper Snoqualmie River Watershed.
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Figure 1. Map of the Snoqualmie, Skykomish and Snohomish watersheds. The upper Snoqualmie River watershed (USRW) is

isolated by Snoqualmie Falls and is highlighted in grey.
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Figure 2. Physical map of the USRW showing the minimum known major barriers and limitations to fish movement. Chester
Morse Lake and Masonry Pool (upper Cedar River watershed) are shown because they are linked to the South Fork
Snoqualmie River through a glacial moraine near the headwaters of Boxley Creek.
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Figure 3. Color-coded river segment divisions show spatial strata for genetic sample collections. Genetic samples were obtained
from each river segment and from the Hardscrabble reach in the upper Middle Fork Snoqualmie River, but were not
obtained in the Commonwealth (Upper South Fork) or canyon/ falls reaches.
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Figure 3a. STRUCTURE plot for K = 2 to K = 6. Each individual fish is represented by a bar of color, with the color correspond-
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ing to a genetic cluster or group. The genetic cluster is identified by the most common individuals in the cluster (e.g.,
at K = 3, one cluster is occupied by westslope cutthroat trout from Twin Lakes and the few unknown trout from the
USRW that are also in that cluster are likely westslope cutthroat trout). Figure 3a shows the results of a hierarchical
analysis where at increased K values, the data set partitioned according to species and then according to geographic
structure and hatchery broodstocks. At K = 2, there are two genetic groups and these are occupied by cutthroat trout
and rainbow trout. At K = 3, the westslope cutthroat trout break away from the coastal cutthroat trout and occupy
their own cluster. At K = 4, the Snoqualmie cutthroat trout break away from the coastal cutthroat trout and occupy
their own cluster. At K = 5, the Cedar cutthroat trout break away from the coastal cutthroat trout and occupy their
own cluster and the Lake Whatcom cutthroat trout remain in a single cluster that includes some USRW cutthroat
trout that were likely derived from Lake Whatcom broodstock. At K = 6, the Snoqualmie rainbow trout break into
two clusters, 1) a putative hatchery rainbow trout cluster and 2) a putative native rainbow trout cluster. At K = 6
clusters are named as follows: Lake Whatcom coastal cutthroat trout = LkWhOcl, Cedar River coastal cutthroat trout
= CedarOcl, Twin Lakes westslope cutthroat trout = TwinOcl, Snoqualmie coastal cutthroat trout = SnoqOcl, Sno-
qualmie rainbow trout = SnoqOmy]1 (hatchery rainbow) and SnoqOmy2 (native rainbow).
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Figure 3b. This shows the breakdown of the STRUCTURE result for K = 6 from Figure 3a. The plot at the top is decomposed
into its individual clusters below to enhance viewing of individual fish and membership in clusters (genetic groups).

The genetic groups are labeled according to the most common member in the genetic group and nomenclature follows
Figure 3a.
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Figure 4. Factorial correspondence analysis (FCA) from GENETIX. Each individual fish is plotted in two dimensional space
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defined by two axes that explain the maximum amount of genetic variance in the data set. Individuals were genotyped
with the full suite of loci (microsatellites and SNPs). Each collection type is indicated by a unique marker (Lake
Whatcom coastal cutthroat trout = LkWhOcl, Cedar River coastal cutthroat trout = CedarOcl, Twin Lakes westslope
cutthroat trout = TwinOcl, Snoqualmie 09I] (mostly cutthroat trout) = Snoq091] and Snoqualmie 091K (mostly rain-
bow trout) = Snoq09IK. Note: the USRW rainbow trout plotted with the Twin Lakes westslope cutthroat trout had
been identified in the field as possible westslope cutthroat trout (see Table 6). Also note: many cutthroat trout plotted
close to or on top of each other on the right side of the first axis. See Figure 5a for plot of collection centers rather than
individuals.
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Figure 5a. FCA plot with contemporary and archived WDFW data comparison (five microsatellite loci). Only collection centers
are shown in this plot; the collection center is the center of the distribution of all the individuals in the genetic space
defined by the axes in the FCA. In addition to Lake Whatcom and Cedar River coastal cutthroat trout, the analysis
included two other cutthroat trout collections from Puget Sound from Bear and Minter creeks (all listed as “Coastal
Ocl). The Snoqualmie 091J (mostly cutthroat trout) cluster with the coastal cutthroat trout collections. The westslope
cutthroat trout collections included Twin Lakes Hatchery broodstock (Twin Lk Ocl) and three collections from the
Pend Oreille basin (westslope Ocl). The Puget Sound rainbow trout (Puget Sound Omy) included eight collections
from Puget Sound tributaries (Cedar, Green and Puyallup rivers and Chester Morse Lake). Also included are four
hatchery rainbow trout broodstocks (Hatchery Omy) that had been planted throughout Washington State. The Puget
Sound Omy and the Hatchery Omy separated from each other on the third axis (not shown in this plot). Note that
the Snoqualmie 091K (mostly rainbow trout) plotted between the cutthroat trout and the rainbow trout collection
centers since cutthroat trout were mixed in with the rainbow trout.

155



Snoqualmie River Game Fish Enhancement Plan

W Coastal Dcl
A Twin Lk Ocl
& Westslope Ocl

# Puget Sound Omy
A #* Hatchery Omy
1 Snogualmie 09U (Ind}
@ 5Snogualmie 091K
SE%
B
o %F
¥

Figure 5b. The Snoqualmie 091I] individuals (ind, mostly cutthroat trout) are plotted over the collection centers in the FCA plot
from Figure 5a.
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Figure 5c. The Snoqualmie 091K individuals (ind, mostly rainbow trout) are plotted over the collection centers in the FCA plot
from Figure 5a.
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Figure 6. Inter-basin distribution of native and hatchery-origin lineages of Pacific trout in the USRW. Pie charts represent
approximate sample locations. Captions next to pie charts indicate the total sample size for each pie chart. Species
abbreviations: O. clarki clarki = coastal cutthroat, O. mykiss = rainbow trout, O. hybrid = hybrid between Pacific trout
species.
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Figure 7. Inter-basin distribution of pure native lineage Pacific trout in the USRW. Pie charts represent approximate sample
locations. Captions next to pie charts indicate a ratio of the total number of pure native trout per total sample size for
each river segment. Abbreviations: Snoq. = upper Snoqualmie River watershed, Cedar = Cedar River watershed, O.
clarki = coastal cutthroat, O. mykiss = rainbow trout.
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Figure 8. Conceptual illustration of the latter stages of the Vashon-Puget glacial recession (white) from the USRW (A-D: rela-
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tive oldest to more recent periods). The Cedar Channel served as the original outlet of Lake Snoqualmie (blue — panel
A), where native Cedar-strain coastal cutthroat and rainbow trout moved freely between the Cedar and Snoqualmie
drainages. The furthest eastern extent of glacial encroachment in the USRW (black hashes — panel A) was located at
the Grouse Ridge (upper X) and Cedar (lower X) moraines (panel B), which blocked the South Fork, Middle Fork,
and upper Cedar River valleys until both moraines were eroded at differing rates during later periods (panels C and
D). See additional conceptualizations in (MacKin 1941).
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Table 1a. History of hatchery Pacific trout stockings in the North Fork, USRW (1933-1989). Stocking data were queried from

0-94Relhistoric.mdb, Stocking data were categorized by river section where release location data were available.

1933-1989
River Hatchery Coastal Westslope
Fork Section* Facility Stock cutthroat Cutthroat Rainbow  cutthroat  Golden Total
Rorth 422426 1,345,422 1,767,848
Up 18,410 17,925 36,335
Arlington 2,996 2,996
Tokul Creeke 15414 17,925 33,339
Mid 52,170 466,943 519,113
Arlington 55,980 55,980
Tokul Creek 52,170 410,963 463,133
Low 23,000 134,252 157,252
Arlington 12,537 12,537
Seward Park 4,756 4,756
Tokul Creek 23,000 116,959 139,959
ge[:ped' 328,846 726,302 1,055,148
Arlington 7,600 7,600
Seward Park 6,000 177,160 183,160
Tokul Creek 322,846 510,542 833,388
Tokul Creek Mt Whitney 31,000 31,000

*All stocked bodies of water that drain into the specified River Section were pooled; includes ponds, lakes, tributaries and main stem

channels.
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Table 1b. History of hatchery Pacific trout stockings in the Middle Fork, USRW (1933-1989). Stocking data were queried from
0-94Relhistoric.mdb, Stocking data were categorized by river section where release location data were available.

1933-1989
River Hatchery Coastal Westslope
Fork Section* Facility Stock cutthroat Cutthroat Rainbow  cutthroat  Golden Total
Middle 419,002 1,406,899 5986 1,831,885
Up 20,406 6,909 5,984 33,299
Arlington 750 750
Lakewood 3,134 3,134
Naches 9,000 9,000
Tokul Creek 10,656 3,775 5,984 20,415
Mid 108,344 296,363 404,707
Arlington 12,720 12,720
Montlake 600 600
Montlake M. Whitney 900 900
Tokul Creek 108,344 282,143 390,487
Low 300 300
Tokul Creek 300 300
z‘:f’ed‘ 290252 1,103,327 1,393,579
Arlington 5,140 5,140
Chiwaukum 10,500 10,500
Lakewood 7,099 7,099
Naches 3,060 3,060
Seward Park 1,300 115,975 117,275
Tokul Creeke 278,452 921,653 1,200,105
Tokul Creek Mt Whitney 50,400 50,400

*All stocked bodies of water that drain into the specified River Section were pooled; includes ponds, lakes, tributaries and main stem

channels.
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Table l1c. History of hatchery Pacific trout stockings in the South Fork and Mainstem Snoqualmie, USRW (1933-1989).
Stocking data were queried from 0—94Relhistoric.mdb, Stocking data were categorized by river section where release

location data were available.

1933-1989
River Hatchery Coastal Westslope
Fork Section* Facility Stock cutthroat Cutthroat Rainbow cutthroat Golden Total
f:::;h 2,255 732,610 1,139,936 720 1,875,521
Up 151,443 129,302 280,745
Arlington 900 900
NMFS 600 600
Seward Park 10,000 10,000
Tokul Creek 151,443 117,802 269,245
Mid 66,100 66,100
Tokul Creek 66,100 66,100
Low 16,822 1,156 17,978
Tokul Creek 16,822 16,822
Tokul Creek Mt. Whitney 1,156 1,156
Unspecified 2,255 498,245 1,009,478 720 1,510,698
Kittitas 50,000 25,000 75,000
N/A 1,488 1,488
Naches 3,060 3,060
1;;‘3’;5”” 4,000 4,000
Rattlesnake Lk 67 67
Seward Park 7,000 291,313 298,313
Tokul Creek 439,690 645,072 1,084,762
Tokul Creek Twin Lakes 720 720
Tokul Creck Mt Whitney 41,033 41,033
Tokul Creek Lk. Whatcom 2,255 2,255
Mainstem 12,527 208,333 220,860
Low 12,527 208,333 220,860
Seward Park 23,941 23,941
Tokul Creek 12,527 184,392 196,919
Total Grand Total 2,255 745,137 1,348,269 720 0 2,096,381

*All stocked bodies of water that drain into the specified River Section were pooled; includes ponds, lakes, tributaries and main stem

channels.
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Table 1d. History of hatchery Pacific trout stockings in the USRW (1990-2007). Stocking data were queried from 0-94Relhis-
toric.mdb, Stocking data were categorized by river section where release location data were available.

1990-2007
River Hatchery Coastal Westslope
Fork Section*  Facility Stock cutthroat Cutthroat Rainbow cutthroat Golden Total
Middle Fork 2745 2745
Up 150 150
Tokul Creck  Mt. Whitney 150 150
Mid 2595 2595
Tokul Creek 2070 2070
Mt. Whitney 525 525
South Fork 2140 3260 5400
Unspecified 2140 3260 5400
Goldendale -
Tokul Creek  McCloud 1260 1260
Tokul Creek  Twin Lakes 3260 3260
Tokul Creek  Mz. Whitney 880 880
Mainstem 600 2038 2638
Low 600 2038 2638
Goldendale -
Arlington McCloud 1296 1296
Arlington Spokane 342 342
Goldendale -
Puyallup McCloud 400 400
Tokul Creek 600 600
onoquaimic /g Tokul Creck 7127l 744 744
g’i‘gsﬁefiizd n/a Reiter Ponds 100 100
Total 0 600 7667 3260 100 11627

*All stocked bodies of water that drain into the specified River Section were pooled; includes ponds, lakes, tributaries and main stem
channels.
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Table 2. Number of trout samples collected among river sections and segments in the upper Snoqualmie River watershed

(USRW).
River Section River Segment Sample size (n)
Upper North Fork 20
Illinois Creek 20
Middle North Fork 30
Lakebed 3
Big Creek Falls 16
Calligan 3
Black Canyon 8
Lower North Fork 38
Black Canyon 27
Three Forks 11
Upper Middle Fork 25
Hardscrabble 4
Goldmyer 18
Dingford 3
Middle Middle Fork 28
Garfield Mtn. 12
Pratt 16
Lower Middle Fork 39
Mt. Teneriffe 14
Sallal Prairie 3
North Bend 21
Three Forks 1
Upper South Fork 20
Denny Creek 4
Asahel Curtis 16
Middle South Fork 29
Tinkham 5
Weeks Falls 11
Grouse Ridge 13
Lower South Fork 38
Sallal Prairie 14
North Bend 22
Three Forks 2
Upper Mainstem 21
Three Forks 21
Lower Mainstem 8
Three Forks 8
Total 296
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Table 3.  Microsatellite and SNP loci used in Snoqualmie River trout genetic study. To simplify nomenclature, WDFW gives
SNP loci a nickname associated in the database with the original name. Both names are given in the table. Species ID
SNPs are indicated by ”SpI” in the WDFW nickname. Names are followed by the percentage of samples that were
genotyped at each SNP locus “% genotyped”.

SNPS
Microsatellites WDFW_name AssayName: % worked WDFW_name AssayName: % worked
Ogo-3 AOmy001 Omy_180 95.05% AOmy125 Omy_u09-56.119  89.06%
Omm1138 AOmy004 Omy_ALDOA_1  84.64% AOmyl126 Omy_ADP-r3.159  31.77%
One-108 AOmy005 Omy_aspAT.123 96.09% AOmyl27 Omy_BAMBI2.312 90.10%
Ots-103 AOmy006 Omy_B1.266 95.57% AOmy128 Omy_BAMBI4.112  95.05%
Omy-77 AOmy007  Omy_B9.164 0.00% AOmy129 Omy_BAMBI4.238  95.57%
Ots-1 AOmy009  Omy CRB_F_1  95.05% AOmy131 Omy_G3PD_2.191  37.24%
Ots-3M AOmy013 Omy_DM20_2_1 95.05% AOmy132 Omy_G3PD_2.246 91.67%
AOmy015 Omy_gdh.271 95.31% AOmy133 Omy_G3PD_2.371 94.53%
AOmy016  Omy GHIPI_2  95.05% AOmy134 Omy_Il-1b_.028  89.58%
AOmy017 Omy_HOXD_1_1 95.05% AOmy135 Omy_I1-8r1.101 95.05%
AOmy018 Omy_ID_1 95.83% AOmy136 Omy_MyoCL2.108 94.53%
AOmy019 Omy_LDH 95.83% AOmyl37 Omy_u09-61.043  95.57%
AOmy020 Omy_LDH.156 94.01% AOmy138 Omy_u09-61.107  94.53%
AOmy021 Omy_LDHB-2_e5  94.53% AOmy139 Omy_u09-63.173  83.85%
AOmy024 Omy_myola.264  0.00% AOmy140 Omy_u09-64.062  91.93%
AOmy027 Omy_nkef.241 95.57% AOmyl41 Omy_u09-64.108 0.00%
AOmy036 Omy_sSOD 94.79% AOmy142 Omy_u09-64.147  46.35%
AOmy038  Omy_BAC-B4.324 0.00% AOmy143 Omy_u09-66.139  95.57%
AOmy039  Omy_BAC-B4.388 0.00% AOmy144 Omy_UT16_2.173  0.00%
AOmy040 Omy_BAC-F5.238 95.31% AOmy145 Omy_BAC-B9.125  34.11%
AOmy042 Omy_BAC-F5.284 94.79% AOmy146 Omy_Ull_2a.114  94.53%
AOmy047 Omy_u07-79.166  95.57% AOmy147 Omy_U11_2b.154  95.05%
AOmy051 Omy_121713-115  95.57% AOmy148 Omy_dacd1-131 95.05%
AOmy055 Omy_127236-583  95.31% AOmy149 Omy_gluR-79 95.05%
AOmy062 Omy_97077-73 95.31% AOmy150 Omy_II-1b.198 88.80%
AOmy065  Omy_97954-618  95.83% AOmyl151 Omy_p53-262 69.27%
AOmy067 Omy_aromat-280  33.07% AOmy152 Omy_SECC22b-88  0.00%
AOmy068  Omy_arp-630 31.77% AOmy153 Omy_UT11_2.046  94.53%
AOmy071 Omy_cd59-206 40.63% ASpI001 Ocl_Okerca 81.25%
AOmy073 Omy_collal-525 95.57% ASpl002 Ocl_Oku202 94.01%
AOmy079 Omy_g12-82 88.80% ASpl003 Ocl_Oku211 0.00%
AOmy081 Omy_gh-475 95.83% ASpl004 Ocl_Oku216 93.49%
Omy_hsp-
AOmy089 90BA-193 32.55% ASpI005 Ocl_Oku217 95.31%
AOmy092 Omy_IL1b-163 95.31% ASpl006 Ocl_SsaHM5 0.00%
AOmy100 Omy_nach-200 95.83% ASpl0o07 Ocl_u800 66.67%
AOmy103 Omy_nkef-308 92.71% ASpI008 Ocl_u801 89.06%
AOmy108 Omy_oxct-85 94.01% ASpI009 Ocl_u802 95.31%
AOmyl110 Omy_star-206 95.57% ASpl010 Ocl_u803 94.79%
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Appendix 3: Snoqualmie trout genetic analysis WDFW 2011

SNPS
Microsatellites WDFW_name AssayName: % worked WDFW_name AssayName: % worked

AOmyl11 Omy_stat3-273 94.53% ASpl011 Ocl_u804 47.66%

AOmyl112 Omy_tgfb-207 95.31% ASplo12 Omy_B9_228 95.05%

AOmyl13 Omy_tlr3-377 95.57% ASpl013 Omy_CTDL1_243 96.88%

AOmyl14 Omy_tlr5-205 95.31% ASpl0o14 Omy_F5_136 95.57%

AOmyl17 u09-52.284 95.83% ASpl015 Omy_HOXD_287  0.00%
Omy_myc-

AOmy118 Omy_u09-53.469  95.57% ASplo16 larp404-111 0.00%
Omy_my-

AOmy120 Omy_u09-54.311  95.57% ASpI017 clgh1043-156 94.79%
Omy_Omy-

AOmy121 Omy_u09-55.112  96.09% ASplo18 clmk436-96 92.71%

AOmyl123 Omy_u09-55.233  94.27% ASpl019 Omy_RAG11 280 93.23%

AOmy124 Omy_u09-56.073  94.53% ASpl020 Omy_URO_302 94.79%
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Table 4.  Genetic variance per locus (% var) among populations from ARLEQUIN (invariant loci are indicated by “fixed”).
Loci identified as under selection in the FST outlier test are highlighted in yellow. Variance for loci under directional
selection loci are in pink.

Locus % var Locus % var Locus % var
Ogo-3 27.31 AOmy065 21.61 AOmyl37  0.27
Omm1138 24.18 AOmy073 21.81 AOmy138 -0.19
One-108 10.92 AOmy079  fixed AOmyl139  34.35
Ots-103 24.04 AOmy081  3.07 AOmyl40  26.11
Omy-77 12.80 AOmy092 5.83 AOmyl43  fixed
Ots-1 13.15 AOmy100  15.19 AOmyl46  11.56
Ots-3M 12.20 AOmyl103 10.91 AOmyl47  27.61
AOmy001 21.30 AOmyl08 13.28 AOmyl148 0.15
AOmy004 6.64 AOmyl110 10.83 AOmyl149 14.77
AOmy005 0.10 AOmyl11  9.06 AOmyl150 591
AOmy006 5.56 AOmyl12  18.09 AOmyl51 19.36
AOmy009 21.17 AOmyl113 1.77 AOmyl53 fixed
AOmy013 fixed AOmyll4 691 ASpl001 36.95
AOmy015 0.66 AOmyll7 14.79 ASpl002 34.77
AOmy016 11.22 AOmyl18  10.77 ASpI004  82.47
AOmy017 68.17 AOmyl120  4.44 ASpI00S 8612
AOmy018 fixed AOmyl21 1.15 ASpl007 35.98
AOmy019 2.94 AOmyl23  29.76 ASpIO08  34.02
AOmy020 24.81 AOmyl24 476 ASpl009 8327
AOmy021 16.98 AOmyl125  22.00 ASpI010 36.00
AOmy027 10.60 AOmyl27  32.04 ASpIO12  -0.52
AOmy036 5.28 AOmyl128 0.16 ASpI013 39.08
AOmy040 37.05 AOmyl129 1.36 ASpl014 37.18
AOmy042 23.93 AOmyl32 1.80 ASpI017 33.45
AOmy047 8.48 AOmyl33 147 ASpI018 35.46
AOmy051 2.09 AOmyl34 18.14 ASpI019 34.56
AOmy055 -0.43 AOmyl135 1.33 ASpI020 32.93
AOmy062 1.31 AOmyl136 18.06
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Table 5. Analysis of molecular variance (AMOVA) with microsatellites (msats), SNPs and both locus sets combined (both).
Values are the percentage of the molecular variance at each level: among populations, among individuals within popu-

lations, within individuals.

averaged over all loci in respective data sets

msats only SNPs only both
Among populations  16.74 25.97 23.69
Among individuals
within populations ~ 14.56 33.18 28.59
Within individuals ~ 68.70 40.85 47.72
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Table 6.

170

Count of different types of trout identified in the USRW from STRUCTURE analysis (see Table 7 for details). Fish
had been field-identified to species, but were inconsistently grouped according to species ID (see Table 7 for field
identifications and text for explanation of categories or types). Snoqualmie O. mykiss population 1 (SnoqOmy1) are
putative hatchery ancestry fish and Snoqualmie O. mykiss population 2 (SnoqOmy?2) are putative native rainbow trout.
Lake Whatcom cutthroat trout (LkWhOcl) and Twin Lakes cutthroat trout (TwinOcl) are hatchery ancestry cutthroat
trout. Cedar and Snoqualmie cutthroat trout (CedarOcl and SnoqOcl, respectively) are putative native cutthroat
trout.

Types Snoq 0913 Snoq 09IK
CedarOcl 7 6
CedarOcl-SnoqOcl 5 3
CedarOcl-SnoqOmy1 1 1
CedarOcl-SnoqOmy2 3 8
LkWhOcl 20 1
LkWhOcl-CedarOcl 5 1
LkWhOcl-SnoqOcl 7 1
LkWhOcl-SnoqOmy1 2 4
LkWhOcl-SnoqOmy2 1 1
LkWhOcl-TwinOcl 1
Ocdl 1

Ocl-Omy 1
Ocl-SnogOmyl 1 1
Ocl-SnoqOmy2 1

Ocl-SnogOmyl 1 2
SnoqOcl 69 35
SnoqOcl-SnoqOmyl 14 4
SnoqOcl-SnoqOmy1,2 1
SnoqOcl-SnoqgOmy2 3 3
SnoqOmyl 3 46
SnoqOmy1,2 4
SnoqOmy2 3 16
TwinOcl 3
TwinOcl-SnoqOmy1 1
TwinOcl-SnoqOmy2 1
Total 148 148
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