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Executive Summary 
The High Resolution Change Detection project was designed to explore the feasibility of using high-

resolution aerial imagery (1 m resolution National Agriculture Inventory Program data) to detect changes 

in land-cover from 2006 to 2009 in selected WRIAs of the Puget Sound region.  Early in the project we 

defined land cover change as the transition from forest landcover to a human dominated landcover, i.e., 

developed areas. High resolution imagery is preferable to medium resolution imagery (30m Landsat 

pixels) for mapping change because important areas such as riparian vegetation and marine shorelines 

cannot be accurately delineated at the resolution of 30-m pixels.  However, high resolution imagery is 

difficult to work with in an automated manner due to the volume of information it contains (large file size 

per unit ground area), the effect of solar position on illumination (shadows) and high local variability of 

imagery within single land cover classes (e.g., forest of different age can look very different in aerial 

photography). With the help of relatively new software and computing power, we used a combination of 

supervised classification to isolate shadows and areas devoid of vegetation, image segmentation to create 

homogenous regions for statistical analysis, and high-efficiency methods for analyst review of sampled 

change locations.  

The “high-efficiency methods for analyst review” were crucial to the success of this project as over 

30,000 individual polygons were reviewed in the accuracy assessment portion of the study. Because 

change occurs at very low rates on an annual basis, finding change locations against an enormous 

backdrop of nonchanging data is an arduous task.  For example, WRIA 7 (the Snohomish River Basin), 

which is 480,000 ha in size, is represented by 4.8 billion pixels and 514,293 polygons or cover polygons  

after analysis.  The initial predictive model that we developed labeled only 5,121 polygons as having 

changed between 2006 and 2009.  That is, the model successfully separated the initial 514,293 polygons 

into the 1% predicted as change and 99% as non-change. To improve accuracy we developed high-

efficiency methods for analyst review that automates the individual review of all computer indentified 

change polygons (5,121 for Snohomish WRIA).  That is, all polygons predicted as change are qued up 

and individually displayed for both time periods, which allows the analyst to determine if the change is 

real.  Of the 5121 predicted change polygons, the review process verified that 3165 polygons had actually 

changed and 1956 did not change.  Of the 3,165 change locations mapped between 2006 and 2009, 2,670 

(84%) were smaller than 1 ha and thus undetectable by coarser imagery (Landsat). By reviewing all 

predicted change polygons, we effectively eliminated commission error such that every mapped polygon 

has been verified as change, i.e., 50% of the vegetation in the polygon (estimated visually) was changed 

into a developed land cover class.  Errors of omission were assessed by randomly selecting a sample of 

polygons predicted as non-change and subjecting those to analyst review. In WRIA 7 we reviewed 3,834 

polygons and found 29 (0.7% of polygons) that actually changed. By expanding the percentage of the 
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changed area that the model missed to the entire WRIA, we estimated that 4,848 acres of change took 

place beyond the 10,678 acres we mapped.  Of the mapped change areas, 2.9 acres were within 60.9 m 

(200-ft) of the Washington Department of Ecology’s (DOE) marine shoreline delineation and 73 acres 

were within 100 m of a WDFW documented fish-bearing streams.   

The final product shows that 100% of the areas mapped as change exhibited real change over the time 

period examined here. Of the areas not mapped as change, we estimate that 1 out of every 246 acres 

mapped as no-change was actually change. These results were consistent over the four WRIAs that we 

analyzed in this project.  

Grant background and introduction 
In December 2009, the Salmon Recovery Funding Board (SRFB) awarded WDFW a grant in the amount 

of $115,000 to evaluate the feasibility of using high resolution aerial photography to track land use 

change in four WRIAs in the Puget Sound region.  In particular, the SRFB was interested in changes to 

riparian and nearshore areas which are known to affect salmon habitat quality. As of 2009 the primary 

data source for tracking land-use/land-cover change was the NOAA Coastal Change and Analysis 

Program’s change layer derived from National Land-Cover Data (NLCD) analysis of Landsat remote 

sensing data. Landsat data is recorded at a resolution of 30 m pixel. This resolution is too coarse for 

change detection with regard to riparian corridors or immediate upland vegetation at the marine shoreline 

In 2009, high resolution aerial imagery became available for two recent time-periods, 2006 and 2009 for 

the entire state of Washington. These  data have a resolution of 1 m and are expected to be generated 

every 3 or 4 years. High resolution data of this sort is difficult to classify using automated techniques due 

to its size (WRIA sized files are many gigabytes of data) and the high level of variability introduced by 

illumination (e.g., sun angle, topography, atmospheric scattering) and complex cover types (e.g., single 

large tree represented by many pixels).  Due to these complications WDFW proposed a simplification of 

output by just mapping major changes in vegetation such as forest-clearing and conversion of relatively 

mature shrub/grasslands to bare ground or developed areas. This type of change is  a significant predictor 

for decline of salmon utilization in streams (Bilby and Mollot 2008) and  these transitions are relatively 

easier to identify with high certainty than transitions between different vegetation classes or different 

levels of urbanization.  Moreover, vegetation clearing is typically  an instantaneous change which can be 

captured over short time periods.  

Project Area 
We completed 3 and nearly finished a fourth (WRIA 8) of the 19 WRIAs in Puget Sound as part of this 

project including the Lower Skagit (WRIA 3), the Snohomish (WRIA 7), the Kitsap peninsula (WRIA 

15) and the Duwamish-Green (WRIA 8). Each of these areas posed different challenges for automating 

change detection. The Lower Skagit had a large percentage of agricultural lands, the Snohomish had a 

relatively high proportion of snow in one of the two time periods, Kitsap has by far the most shoreline of 

any WRIA and the Duwamish-Green which contains the greater Seattle metropolitan area has a 

significantly larger portion of urban lands than the other WRIAs . 

Methods  
This project was split into five major steps.   

1. Image preparation 
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2. Spectral vegetation and shadow modeling 

3. Image segmentation 

4. Training and statistical modeling 

5. Analyst review and accuracy assessment 

Image Preparation 
The raw imagery was acquired from the 2006 and 2009 National Agriculture Inventory Program (NAIP). 

NAIP is a federal program with optional state support for flying specific areas and utilizing different 

photographic capture parameters.  The data is delivered in tiles suitable for streaming over broadband 

lines. These tiles were in 64 km
2
 and 100 km

2
 pieces. To create WRIA wide images, we pieced the 

individual tiles together using Erdas Imagine 10.0.  The 2006 data was provided with a pixel size of 0.5 

m. The 2009 data was provided at 1.0 m. We resampled the 2006 data up to one meter using the cubic 

convolution setting in Imagine. For example the Skagit began with 304 tiles from 2006 and 194 tiles from 

2009. The mosaic of three-band image from 2009 resulted in about a 14 gb image.  The 2009 image 

initially had four bands (red, green, blue, near-infra red [NIR]). The RGB bands were extracted to be 

paired with the 2006 imagery.   

In order to assess spectral differences (potential change) between two image dates, the range of brightness 

values can be adjusted using a technique called a Histogram match so that pixels depicting similar 

conditions have more similar values. Histogram matching expands or compresses the range of values in 

one image to more closely match a second image’s range. A review of the band-wise histograms revealed 

the 2006 imagery was more evenly distributed. For this reason the 2009 image was histogram matched to 

the 2006 histogram to utilize the greatest range of spectral information.  A simple band-wise difference 

image was created by subtracting the 2006 RGB bands from the 2009 RGB bands. The 2009 NIR band 

was used only for vegetation modeling (see below) since the 2006 did not contain an NIR band. 

Spectral  vegetation and shadow modeling 

The NIR band  is regarded as highly sensitive to vegetation density and is key to calculating all major 

vegetation indices [e.g., Normalized Difference Vegetation Index (NDVI)] (Lillesand, Kiefer et al. 2004). 

We used the NIR and green bands to classify vegetation density classes using ERDAS’ [feature space 

classification] tool. While NDVI uses the NIR and red bands, we found the NIR and green bands to have 

greater separation in plots of spectral density. We identified three spectral regions that appeared to 

separate areas observed as non-vegetation, grass/field and mature shrub/forest.   Of these the non-

vegetation class was the most important as it was used in both the segmentation procedure (described 

below) and the change modeling. For the segmentation procedure we used a simple non-veg/veg mask. 

For modeling we used polygon proportions in the three different vegetation levels, high medium and low, 

which approximated land cover with trees, grass or no-vegetation. We did this instead of using simple 

NDVI because it allowed us to classify images based on two dimensions instead of a single index derived 

from the two bands.  

One of the oft-cited difficulties in automatically processing high-resolution imagery is the presence of 

shadows.  Shadows were a source of confusion in many places where the sun angle was in opposing 

directions between the two image dates. Tree crowns appeared either dark or light depending on 

illumination angle and ground shadows often lay in opposite directions.  For the purpose of automatically 
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detecting change, different sun angles presents a serious obstacle as areas can be speckled with light and 

dark patches between image dates due solely to angle of the sun. 

However, shadows were also a source of information. The presence of shadows is an indicator of height 

variation and thus a useful way to separate homogenous green forest stands from homogenous green 

agricultural fields. Due to the inter-annual cycle of crop production, agricultural lands are constantly 

changing over the course of days or weeks depending on growth, harvest and moisture.  Agricultural 

lands provide a particularly difficult problem for spectral-based change detection.  

Areas in shadow also present a challenge for the segmentation procedure (described below) because the 

information content in the shadow area is much lower than in illuminated areas. Very finely detailed 

segmentation will generally create segments out of shadowy areas or merge intermittent shadows into 

segments providing contaminated summary spectral values. Even with 1-m resolution imagery a shadow 

edge can be smoothed enough to enhance the appearance of a light to dark gradient from non-shadow to 

shadow as opposed to a sharp distinct boundary. This smoothing can make the spectral values at 

proximate pixels quite similar across shadow boundaries and result in a general blurring of segment 

boundaries.  

To help minimize the shadow effect we created shadow masks from the blue and green bands using a 

similar procedure as in the NIR vegetation density mapping. We delineated an area in blue-green feature 

space using ERDAS Imagine that corresponded with the darkest areas of the image, the shadows. This 

approach created a sharp line in the previously mentioned gradient darkening. This line tended to over- or 

under-map shadows depending on location because the illumination across whole WRIAs was not 

uniform.  The difference was generally expressed in the amount of shadow so that a heavily shadowed 

forest might appear to be a large mix of shadow and non-shadow where a brightly lit open oak might have 

a considerably smaller mapped shadow area due to an overall brighter region.  Shadow masks were 

created for both the 2006 and 2009 imagery. 

Image Segmentation 

When analyzing 1m aerial imagery, individual pixels often represent only a portion of an individual 

landscape feature such as a tree or a house. A tree may be covered by hundreds of pixels that appear to the 

human eye as a feature but, to the computer are simply an area of similarly colored squares (pixels).  This 

contrasts strongly with Landsat pixels which tend to average over multiple features such as trees or 

houses because of the resolution of the pixel is large relative to the mapped feature. If an ideal scale of 

analysis would detect a single suburban lot clearing, then the data resolution must be of a size such that an 

average single home lot of 1/4 acre (U.S. Census Bureau 2011) can be recognized and located. With 

Landsat, a single pixel is almost ¼ acre. With 1 m imagery that same area is represented by 900 pixels.  

While a single Landsat pixel may unambiguously represent a single ¼ acre change, to do so, that pixel 

must be precisely located over the exact area of change (i.e., edge match). Thus, while the size of a 

Landsat pixel is theoretically acceptable for the minimum area criteria, Landsat does not adjust for 

placement or lot shape.  Therefore to reliably map change at small scales, smaller pixels must be 

aggregated into statistically homogenous regions, representative of different landscape features or land-

cover areas through the process of image segmentation. 

We used Definiens (Trimble) eCognition and eCognition server to perform the segmentation. The 

segmentation step was completed using 6 spectral bands and two thematic layers, shadows and no-



5  08/09/2011 

 

vegetation.  Areas were separated into 3 x 3 km tiles and segmented individually.  Segment size in 

eCognition is controlled by a variance parameter referring to the spectral variance within a segment. 

Larger variance parameters lead to larger segments.  Since variance controls areal extent, areas of highly 

homogenous land cover (e.g. large forest tracts) will generate larger segments than areas of high 

variability (e.g.. suburban residential housing).  Segment creation can occur hierarchically either starting 

with very small segments and aggregating them or starting with large segments and recursively splitting 

them.  We used the latter approach as it tends to locate big landscape features allowing refinement at 

smaller scales. In our initial large segmentation we used the three visible band layers from the 2009 NAIP 

imagery and the three difference layers calculated between the 2006 and 2009 NAIP imagery.  

Due to the almost infinite way segmentation parameters can be set, resulting segments can differ 

markedly based on segmentation methods. Our goal with segmentation was to separate areas of 

significant vegetative change between the two time periods as individual segments.  

We used two thematic layers to constrain the segmentation to some specific boundaries.  The thematic 

layers were the 2009 shadow layer and the 2009 low vegetation layer as described in the previous section.  

The shapes of the shadow features tended to be very complex in areas with mature vegetation 

(meandering around tree crowns with different heights), while being relatively simple in urban areas 

(straight lines next to buildings) and mostly absent in agricultural areas (1 m resolution imagery smoothes 

over shadows between adjacent row crops).  This produced shadow segments with markedly different 

shape characteristics, a feature we expected would inform the statistical change model. Also by separating 

the shadow regions, the remaining pixels tended to have more homogenous tones. We ran models using a 

combination of 2006 and 2009 shadows but found the additional 2006 shadows forced intersections in the 

segmentation.  In many cases the additional intersection split up change areas making them harder to 

detect. 

Training and Statistical Modeling 

Change prediction was done by classifying a sample of image polygons as to the type of change or lack of 

change that was visible by observing image triplets (2006 image, 2009 image  and their difference image).  

We then used polygon attributes to build a predictive model to separate changed from non-changed 

polygons. The training sample was stratified into two populations based on the values of the green band 

difference. The split value varied between study areas depending upon the histogram of change values. 

For example in WRIA 7 strata were split into polygons with dGreen values above 150 and below. Since 

landscape change is a relatively rare event the use of stratification ensured a representative sample was 

available for model building.  We used the Random Forest recursive modeling algorithm (R package) to 

build the model (Breiman 1984). Random Forests is an extension of classification and regression trees 

(CART) that is relatively resistant to collinear variables and sampling artifacts. Random Forests builds a 

large number of CART models each with a subset of the predictive data and the model data. The 

prediction for each data point is the class with the majority of predictions from the multiple trees. System 

memory is an issue with building large trees. We used 1500-3000 trees (automated individual model runs) 

depending on the size of each data set. 

The attributes in the prediction set came from several sources. The segmentation software (eCognition 8) 

allows for the calculation of many shape and spectral parameters for each polygon in addition to 

contextual variables based on landscape position or values from surrounding polygons. We retained ~25 
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variables from eCognition (Table 7). We also sampled the 2006 and 2009 shadow masks and the 2009 

NIR vegetation density layer with each polygon.  This provided us with a proportion shadow and 

proportion high/low/no veg for each polygon.  In WRIA 7 we also used elevation to help account for 

snow differences between the images.  

Analyst Review and Accuracy Assessment 

The predictive model results in two populations of classified polygons, those predicted to have changed 

and those that have not changed. The relative proportions of these two populations are highly unequal 

with changed polygons generally making up less than 2%.  Prediction error can be described as “errors of 

commission”, when a polygon is incorrectly predicted to be change, and “errors of omission” when a 

changed polygon has been labeled no-change. Since the errors of commission are potentially much 

smaller and directly reflected in the final change product, we wanted to review all polygons predicted as 

change. Reviewing polygons within a GIS, especially with very large image files, is a very time 

consuming process. We developed a tool to sub-sample the imagery based on a polygon layer that 

facilitates  rapid viewing of the clipped images in a separate program. Using this tool we viewed all 

predicted change polygons and verified which were actually change. This effectively eliminates model 

errors of commission. Omission error was estimated through sampling. We sampled approximately 1-3% 

of the remaining non-change polygons for changes that were not detected by the statistical model.  By 

summing the acres mapped and expanding the omission rate over the remaining acreage we derived an 

overall estimate of changed acreage. 

Results 
The primary results for this project are the change polygons themselves. Change mapping has been 

completed for WRIAs 3, 7, 8 and 15 with post-analysis summaries pending for WRIA 8. The purpose of 

the change analysis was to provide the area and location of change as defined above and to estimate non-

mapped change (omission error) through statistical sampling of the remaining area. The estimate of 

additional non-mapped change is a by-product of our rigorous accuracy assessment method. The mapped 

change locations provide information on the relative size of changes and their location. The applications 

for these results involve analyses geared towards assessing their proximity or intersection with other 

important locations such as riparian corridors, wetlands, urban growth areas and marine shorelines.  

In the following section we summarize the primary results, number and area of change polygons and non-

mapped change estimates. Following the summary we will show four brief examples of analyses showing 

some applications for the high-resolution change polygons. 

In Table 1 the total change locations and area are provided for each WRIA. The change polygons tend to 

represent individual change events which lets us calculate representative statistics on the extent and 

frequency of change events. Raster change products like CCAP characterize each individual pixel as to 

whether or not it is change so deriving change event distributions is difficult. The mean change size in 

Table 1 is for all change polygons. In most case a few large forestry tracts significantly skew the mean so 

we also show the median value. 
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Table 1: Overall segmentation summaries with general WRIA characteristics 

Total Change Summaries WRIA 3 WRIA 7 WRIA 15 

Total Change Locations (# of polygons) 1237 3164 1740 

Total Change Area (acres) 5750 10032 5420 

Average Area per polygon (acres) 4.65 3.17 3.12 

Median Area per polygon (acres) 0.93 0.70 0.69 

 

Change with evidence of permanent urbanization 

The subset of those change locations with evidence that those changes were relatively permanent 

(presence of roads, housing, urban adjacency), are shown in Table 2. In the lower Skagit (WRIA 3) and 

Snohomish (WRIA 7) about half of the change locations had signs of development.  In Kitsap (WRIA 15) 

82% of the change locations were associated with urbanization. The average change areas were largely 

influenced by large forestry tracts but the medians in all three were less than 1 acre.  

Table 2: Change locations showing with visible indications of permanent conversion 

Change to Development Summaries WRIA 3 WRIA 7 WRIA 15 

Permanent Change  Locations (# of polygons) 658 1534 1433 

Permanent Change Area (acres) 1182 2307 1449 

Annual Rate of Change (% of total WRIA area) 0.082% 0.057% 0.105% 

 

Each predicted change location from the statistical model was individually reviewed. Change locations 

that had roads or buildings or were adjacent to urban areas were assumed to be permanent change as 

opposed to rotational forestry, natural disturbances or other resource uses. These changes included 

clearings for new housing-tracts and commercial development as well as numerous locations of single 

dwelling or partial lot clearings.   

The non-mapped change estimates (Table 3) are derived from the omission portion of the accuracy 

assessment. The area of non-mapped change in the omission analysis was calculated by multiplying the 

estimates of proportion of land that changed not detected in our model by the area of the WRIA.  Change 

detection is usually done in one of two ways, mapping change or estimating change through sampling. 

The CCAP change detection product is an example of mapped change where each pixel is assessed and 

error rates are reported as commission and omission errors. In other studies change is assessed through 

sampling, often performed with high resolution images as we use here. Change is reported as regional 

rates of change with error expressed as a confidence bound on the rates. Here we present a hybrid 

approach that maps as much change as possible, estimates what likely change remains and provide 
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estimates of detection errors. Effectively we eliminate the commission error portion of the mapping 

methods and also provide regional rates as with the sampling methods. 

Table 3: Estimates of non-mapped change derived from sampling. Unmapped change is estimated by 

sampling polygons predicted by the statistical model as non-change. The acreage reported here is in 

addition to the mapped change, thus the estimated total change is the sum of the mapped change and 

estimated omission error. The proportion of estimated total change non-mapped is the percentage of the 

total change estimate consisting of non-mapped areas. 

Estimated Non-mapped Change WRIA 3 WRIA 7 WRIA 15 

Sample size of non-change polygons  3017 3834 4833 

Omission errors in sample (polygons) 31 29 70 

Total sampled non-change area (acres) 12419 10678 8864 

Omission error polygon’s area (acres) 55 36 60 

Omission error area / Total sampled area 0.44% 0.34% 0.68% 

Non-mapped change estimate (acres) 1599 4848 2871 

Total change estimate mapped plus non-mapped (acres) 7349 14880 8292 

Proportion of estimated total change non-mapped 22% 33% 35% 
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Example 1: Shoreline and riparian change  

Among the most important lands in Puget Sound are marine shorelines and riparian corridors. We used 

the DOE Shorezone and WDFW fish distribution layers to locate these important lands in relation to 

change events. We used a 200 ft (61 m) buffer for shorelines because the Shorezone Management Act 

specifically notes the 200 ft area upslope from the Ordinary High Water Mark as being the primary area 

of concern. We used a 100 m buffer for all streams. While stream buffers are wider what most Critical 

Area Ordinances call for, different buffers widths can be readily analyzed for specific applications. In 

Table 4, the number of change polygons intersecting one of the buffers is reported along with the 

“clipped” area that lies within the buffered boundary. The stream analysis used WDFW’s fish distribution 

layer which is a map of stream reaches with observed fish occurrences. The changes along these streams 

were split into three categories: forestry, permanent and natural. The natural category was added to reflect 

riparian changes that we interpreted from the photographs to be the result of stream course changes. The 

cause of the events causing the stream course changes may reflect upstream disturbances but is only noted 

to differentiate those types of change from change resulting from clearing for development or from forest 

harvest.   

Table 4: Marine shoreline and riparian analysis. We created buffers around linear water features: 61 m 

around marine shorelines (DOE shorezone data) and 100 m around WDFW documented fish bearing 

streams. The number of intersecting change areas is listed below along with the total area of the changes 

and the area within the buffers. The total length of shoreline and documented fish-bearing stream is 

included for reference.  

 
WRIA 3  WRIA 7  WRIA 15 

MARINE SHORELINE ANALYSIS 

   Total length of shoreline in WRIA (km) 275 125 838 

Number of change polygons intersecting shoreline 10 11 43 

Change in polygons intersecting shoreline area (within 61 m) 200 ft shore 

Polygons (acres) 34 12 35 

Change within 200 ft shore (acres) 3.2 2.9 7 

    RIPARIAN ANALYSIS 

   Total length of Fish Bearing Streams in WRIA (km) 467 2022 909 

    Development change polygons 

   Number of development change polygons intersecting stream buffers 57 69 128 

Stream, Buffer Polygons (acres total) 268 191 1333 

Stream Buffer Polygons (acres clipped) 67.5 73 188 

Non-permanent change polygons 

   Number of non-permanent change polygons intersecting stream buffers 30 33 19 

Buffer Polygons (acres total) 336 1379 567 

Buffer Polygons (acres clipped) 53 163 114 

Natural disturbance change polygons 

   Number of natural change polygons intersecting stream buffers 22 166 5 

100-m fishdist Buffer Polygons (acres total) 83.5 199 2.3 
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Example 2: Change across tax parcel designations 

The change polygons provide locations where land-cover was altered. Among many possible questions is 

the issue of which land-use designation were associated with land-cover changes. We used the current 

Puget Sound wide parcel database obtained from the DOE in April 2011to link land-use designations to 

the areas of change. We summed over the change areas using tax roll classes from the changed parcels. In 

each WRIA the five most common tax roll classes were determined for all WRIAs and reported here. We 

hypothesize that change in two of the most common tax classes, Undeveloped Land and Single-Family 

homes, would usually be permanent. The percentage development in Undeveloped and Single-Family 

units is shown as a check on the designation of permanent vs. non-permanent change. Areas exceeding 

100% may indicate more land was permanently changed than was labeled so in our analysis. Areas with 

less than 100% may indicate that we overestimated the amount of permanent change.  

Table 5: Tax parcel designation analysis.  We used tax parcel designations to determine land-use 

categories most often subject to change. We report the number of parcels affected and the total area of the 

changes within tax roll categories for each of the five most abundant categories by area in each WRIA.  

Parcel Analysis   WRIA 3 WRIA 7 WRIA 15 

Designated forest land 84.34 RCW (# of parcels) 336 477 221 

Designated forest land (acres) 2659 4941 2388 

Govt services ( # of parcels)     48 

Govt services (acres) 

  

156 

Public timberland/non-desig forest (# of parcels) 194 283 94 

Public timberland/non-desig forest (acres) 1490 1149 885 

Single Family Units( # of parcels) 622 2036 1175 

Single Family Units (acres) 451 1119 659 

Undeveloped land (# of parcels) 321 1263 967 

Undeveloped land (acres) 368 1462 1086 

Ag classified under current use 84.34 (# of parcels) 211     

Ag classified under current use (acre) 249 

  Open Space land under 84.34 RCW parcels 

 

247 

 Open Space land under 84.34 RCW (acre) 

 

587 

 

    Percent Undev & Single Fam (of Developed change) 69% 112% 120% 
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Example 3: Change within Growth Management Areas 

The Growth Management Act is the key piece of legislation in the State of Washington designed to foster 

long-range land-use planning and prevent urban sprawl. To assess the effectiveness of the GMA our next 

analysis looked at the proportion of changed area within and outside of the Growth Management Areas. 

The UGA permanent percentage is simply the proportion of change area classified as permanent within 

the combined city and Urban Growth Area boundaries. The intent of the UGAs is to reduce urban sprawl 

by providing regions for intensifying development. The percentage of permanent change within the UGAs 

is one measure of their impact on regional development trajectories. The results of the parcel tax roll 

analysis combined with the listed UGA permanent change in the Lower Skagit suggests the assignment of 

permanent change may have been too liberal outside of the UGA. 

Table 6: Results for Growth Management Area change.  We used the current city boundaries and Urban 

Growth Area (UGA) layers from April 2011 to identify which change locations occurred within the cities 

or UGAs. The number of change locations and their total area are reported. Additionally the percentage of 

permanent change in each WRIA within the city and UGA boundaries is reported. The percent growth 

within the city and UGA is also a GMAP measure. 

Urban Growth Area Change (permanent) WRIA 3 WRIA 7 WRIA 15 

Change locations inside the GMA (# of polygons) 190 538 340 

Change area inside the GMA (acres) 232 1138 737 

Permanent change inside UGA (%) 20% 49% 51% 

 

Example 4: Change in Ecological Systems 

Our last example is concerned with assessing which vegetation types are being converted to development. 

We intersected the change polygons with the US Gap program’s 2008 Ecological Systems map to assess 

which systems were subject to change. 

Ecological systems are classification units developed by NatureServe. An ecological system is defined as 

“a group of (existing) plant community types that tend to co-occur within landscapes sharing similar 

ecological processes, substrates, and/or environmental gradients.” The purpose of this classification 

system is to provide an intermediate scale for mapping efforts, ecological assessments, and for 

establishing conservation priorities.” 
1
  

Table 7 lists ecological systems form the USGS Gap program by change area in WRIA 3.  As expected 

the majority of the ecological systems affected are a mixture of douglas-fir and western hemlock systems. 

An interesting exception is 142 acres of North Pacific Lowland Riparian Forest and Shrubland. Much of 

the change to this system appears to be the result of channel migration as opposed to clearing for 

development.  

                                                      
1
 http://www1.dnr.wa.gov/nhp/refdesk/communities/ecol_systems.html 
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Table 7: Acreage of ecological systems undergoing change between 2006 and 2009 in WRIA 3.  All of 

these figure present change with no attempt to determine if those changes are permanent  

Ecological System Acres 

North Pacific Maritime Mesic-Wet Douglas-fir-Western Hemlock Forest 2948 

North Pacific Dry-Mesic Silver Fir-Western Hemlock-Douglas-fir Forest 1544 

North Pacific Maritime Dry-Mesic Douglas-fir-Western Hemlock Forest 564 

North Pacific Mesic Western Hemlock-Silver Fir Forest 203 

Harvested forest-shrub regeneration 171 

North Pacific Lowland Riparian Forest and Shrubland 142 

Harvested forest-tree regeneration 109 

Harvested forest-grass regeneration 106 

North Pacific Dry Douglas-fir-(Madrone) Forest 104 

Developed, Low Intensity 98 

Pasture/Hay 89 

Cultivated Cropland 56 

Temperate Pacific Freshwater Emergent Marsh 30 

North Pacific Shrub Swamp 20 

North Pacific Broadleaf Landslide Forest and Shrubland 10 
 

Feasibility Analyses 
Our original proposal discussed several possible feasibility studies as additions to this project. These 

included an analysis on roads and road crossings, permanent vs. non-permanent vegetation changes, and 

quantifying changes to at least 2 additional ecological systems. During the course of this work, we  

determined that the NAIP data was inappropriate for assessing road crossings due primarily to the fact 

that crossings are often obscured by trees adjacent to the road. The question of assessing permanent vs. 

non-permanent change was ultimately incorporated directly into the accuracy assessment analysis.  

Permanent change had visible signs of development (e.g., roads, buildings, etc) or was adjacent to 

populated areas as opposed to non permanent change represented by rotational forestry activities or where 

the intent of the change was indeterminable.  The final feasibility question was concerning change within 

specific ecological systems. Since the current project does not seek to classify vegetation types, but only 

to map major vegetative loss, mapping change in existing ecological systems is readily straightforward 

and done by simply intersecting the change locations with the ecological systems maps. We provided an 

example of this for WRIA 3 above. 

Projected Future Costs and Analyses 
Change Detection  proceeds in 5 major steps . The time estimates below refer to an average 400,000 acre 

WRIA but due to the human-task to machine-task partitioning are probably not greatly different for 

WRIAs ranging in size up +/- 50%    

Image acquisition/preparation:  3-5 days. Computer processing capacity is the primary bottleneck here. 

Multiple areas can be processed simultaneously with little additional time. 
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Spectral based shadow and vegetation modeling: 1-2 days. This task is largely constrained by an analyst’s 

hands on time for the classification.   

Image segmentation: 4-7 days. Of this time about 2 days are required for the analyst’s model set-up and 

review with the remaining time consumed by machine processing.  

Training and statistical modeling: 3-5 days.  This task is primarily analyst limited and consists of both 

statistical modeling and hand classifying training data. This assumes a classified training set of 5,000 

locations. 

Accuracy assessment: 5-7 days. This task primarily consists of an analyst reviewing polygons predicted to 

be change and conducting  an accuracy assessment set of 5,000 polygons for omission errors.     

Analysis and Report preparation:2- 5 days (this task can vary considerably depending on the number of 

analyses required) 

The per WRIA workload will range from 18-31 days depending on size, image rectification and required 

post-change detection analyses.  Currently 4 WRIAs have essentially been completed and 3 more will be 

completed as part of a separate project.  This leaves 12 WRIAs remaining for the 2006-2009 change 

detection period. We expect to receive 2011 data in early 2012 which could provide an additional update 

for the 2009-2011 time period.   

Digital Data Availability 
These layers are available upon request from Ken Pierce, Landscape Spatial Analyst, WDFW 360 902-

2564.   

Change Polygons: The change polygons for all four WRIAs are available on DVD.  

Accuracy Assessment data: The image triplets used for each training polygon and for the commission and 

omission analyses are available on DVD along with the beta version of the triplet-AAViewer. 

WRIA Imagery:  Mosaics can be obtained on a hard drive. Total space requirements depend on imagery 

requested. Individual date mosaics for each WRIA range from about 10-55 gb each.  
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