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ABSTRACT Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and

conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter

surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 2004–2007. We conducted 205 trials of the

ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the

ground (n ¼ 84), Global Positioning System (GPS) telemetry (n ¼ 115), or both (n ¼ 6). Aerial survey crews detected 77% and 79% of all

groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain

goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation.

Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within

detected groups of mountain goats was small. We applied Horvitz–Thompson-like sightability adjustments to 1,139 groups of mountain goats

observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was

85% but ranged 0.75–0.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision

of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general

guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we

recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats. ( JOURNAL

OF WILDLIFE MANAGEMENT 73(3):468–478; 2009)
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Informed management of mountain goats (Oreamnos

americanus) requires accurate information on the status
and trends of local populations. Mountain goats appear to be
more sensitive to harvest than most ungulate species due to
low rates of natality and recruitment and the likely additive
effects of natural and harvest mortality (Hebert and
Turnbull 1977, Kuck 1977, Smith 1988, Hamel et al.
2006, Festa-Bianchet and Côté 2008). In Washington
State, USA, as throughout much of their range, native
mountain goat populations have declined in recent decades
and harvest has been suspended or curtailed in many
populations (Johnson 1983, Glasgow et al. 2003). Current
guidelines in Washington recommend restricting harvest to
local populations .50 individuals and to harvest �4% of
populations, although recent findings suggest more con-
servative limits may be appropriate (Hamel et al. 2006).
Consequently, identifying appropriate harvest levels for
mountain goats is dependent on unambiguous estimates of
population size.

Mountain goat populations are routinely surveyed from
helicopters throughout mountain goats’ range due to
difficulties obtaining representative sample counts in
rugged, high-elevation habitats using other methods
(Resources Information Standards Committee 2002, Glas-
gow et al. 2003, Washington Department of Fish and
Wildlife 2003). As with all aerial surveys, helicopter counts
of mountain goats are biased by the inability of aerial
observers to detect all mountain goats present in a survey

area. Previous studies have estimated that helicopter surveys
typically detect 60–70% of mountain goats present, based
on detection rates for marked mountain goats (Cichowski et
al. 1994, Poole et al. 2000, Pauley and Crenshaw 2006,
Poole 2007) or by comparing to known populations
estimated from other methods (Johnson 1983, Houston et
al. 1986, Gonzalez-Voyer et al. 2001). Factors influencing
detection biases are incompletely understood, but detection
may be influenced by group size, animal activity, and
vegetation cover (Poole 2007). Hence, long-term monitor-
ing based on raw count data or one correction term
(Houston et al. 1986, Cichowski et al. 1994, Poole et al.
2000, Poole 2007) may be misleading if group sizes or
animal distribution vary among surveys, particularly if
factors that influence sightability change systemically over
time (Gonzalez-Voyer et al. 2001).

We considered several potential methods for obtaining
unbiased aerial survey estimates of mountain goat abun-
dance. Mark–resight methods use marked animals (e.g.,
radiocollared or paint-marked) to estimate abundance based
on proportions of marked and unmarked animals resighted
during aerial surveys (Cichowski et al. 1994, Pauley and
Crenshaw 2006). We judged the method impractical for
large-scale application to mountain goat surveys due to
costs, safety issues, and wilderness concerns associated with
the need to maintain a marked sample in the population for
recurring surveys, large sample requirements, and the
necessity for replicate surveys to adequately model hetero-
geneity of resighting probabilities (Pauley and Crenshaw
2006). As an alternative to animal marking studies, double-
observer methods use observations from 2 independent
observers, either on the same or different sampling plat-
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forms, to sight and resight groups for analysis in classic
mark–resight analyses (Smith and Bovee 1984, Conn et al.
2004, Udevitz et al. 2006). We judged double-observer
methods employing the same aircraft as unsuitable because
of the assumption that observations are independent among
the 2 observers, a condition we believed untenable in such
highly dissected terrain. Observations of 2 observers from
different aircraft are more likely independent but fluidity of
group movements in response to aircraft disturbance creates
intractable problems in discriminating which groups were
sighted by one or both observer teams, as was noted for
Dall’s sheep (Ovis dalli; Udevitz et al. 2006).

Sightability modeling (Samuel et al. 1987) provides an
alternative to mark–resight methods. Sightability can be
modeled using logistic regression to estimate the probability
of sighting groups of animals as functions of covariates
hypothesized to influence detection probability. Sightability
models can be developed from aerial surveys conducted over
groups of animals containing marked individuals or groups
that are observed from the ground during the aerial survey
and by recording covariates for groups that are both seen
and missed by the aerial survey crew. The method was first
developed to improve accuracy and reliability of aerial
surveys of elk (Cervus elaphus) populations in Idaho (Samuel
et al. 1987, Steinhorst and Samuel 1989) and has been
applied more recently to mule deer (Odocoileus hemionus;
Ackerman 1988), moose (Alces alces; Anderson and Lindzey
1996), mountain sheep (Ovis dalli, Udevitz et al. 2006; O.

canadensis, Bodie et al. 1995), and several other elk
populations (Anderson et al. 1998, Cogan and Diefenbach
1998, McCorquodale 2001). No regression-based sight-
ability models have been developed previously for mountain
goats, in part due to difficulties associated with obtaining
covariates for missed animals in such diverse terrain as
mountain goats occupy (Poole 2007).

Our objective was to develop a sightability model
applicable to mountain goat surveys in the Cascade and
Olympic Mountain Ranges of Washington, so that unbiased
population estimates can be derived. Because mountain
goats typically move during surveys and are unlikely to be in
the same sighting conditions by the end of a survey, we used
a combination of ground observers and recent advances in
Global Positioning System (GPS) telemetry to obtain
covariates for both seen and missed goat groups at the time
of over-flight. With the aim of building a broadly applicable
model, we examined effects of group size, habitat, and
environmental covariates on aerial sightability as well as
effects of helicopter type, crew experience, and survey
characteristics. Because sightability models assume that all
individuals are counted without bias within groups (Cogan
and Diefenbach 1998), we also assessed potential biases in
determining group size when surveying mountain goats
from the air.

STUDY AREA

We conducted sightability trials in mountain goat habitat
throughout the Cascade and Olympic ranges in Wash-

ington, usually in conjunction with annual population
surveys. Survey personnel were typically biologists from
state and federal agencies responsible for the area being
surveyed and included participants from the Washington
Department of Fish and Wildlife, 3 national parks
(Olympic, Mt. Rainier, and North Cascades), and 2 Indian
tribes (Sauk-Suiattle and Upper Skagit). We divided areas
to survey for mountain goats into blocks of contiguous
suitable habitat of about 500 ha (Olympics) or a size that we
could survey in ,30–45 minutes (Cascades). In the
Olympics, survey blocks contained all terrain above 1,525
m, whereas in the Cascades, we determined block
boundaries on the basis of elevation, habitat maps (Wells
2006), and local expert knowledge. Based on Johnson and
O’Neil (2001), surveyed areas were 65% Alpine Grasslands
and Shrublands, 22% Montane Mixed Conifer Forest, 8%
Subalpine Parklands, 2% Eastside (Interior) Mixed Conifer
Forest, and 1% each of Eastside (Interior) Grasslands,
Ponderosa Pine and Eastside White Oak Forest and
Woodlands, Shrub-Steppe, and Westside Lowland Coni-
fer–Hardwood Forest.

METHODS

Capture and Collaring
We captured 54 mountain goats in representative areas by
darting from a helicopter or from the ground (Rice and Hall
2007) or by leg-snaring using a hand-held rope (Stevens
1983, Houston et al. 1994). All captures were in compliance
with Washington Department of Fish and Wildlife Policy
on Wildlife Restraint or Immobilization (M6003). We
fitted captured mountain goats with GPS-equipped collars
(Vectronic Plus 4, Berlin, Germany), which were color-
coded (black, light blue, red, or yellow) using 3 bands on
both sides of the collar. Collars contained a GPS receiver,
data storage memory, very high frequency (VHF) beacon,
ultra high frequency beacon, accelerometers on the longi-
tudinal and transverse axis of the collar, and radio-modem
for data and programming transfer.

Survey Methods
We conducted sightability trials during surveys between 20
June and 24 September, 2004–2007, using 3 helicopter
models, Bell Jet Ranger (Bell Helicopter Textron, Inc., Fort
Worth, TX), Hughes 500 (MD Helicopters Inc., Mesa,
AZ), and Enstrom 480 (Enstrom Helicopter Corporation,
Menominee, MI). These helicopters had similar seating
configurations and we always positioned crew members with
primary observer beside the pilot, secondary observer in the
back seat behind the primary observer, and navigator behind
the pilot. During surveys, primary and secondary observers
were nearly always on the side of the helicopter facing
terrain. We conducted surveys under diverse environmental
conditions, but we did not fly if cloud cover, fog, or rain
obscured a clear view of the ground or if high winds created
unsafe flying conditions.

Due to the irregular topography of mountain goat habitat
and the diverse terrain and vegetative cover in areas to be
surveyed, it was not feasible to adhere to strict flight patterns
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such as transects. Nor did we judge it economically feasible
to maintain a constant flight speed that would be slow
enough to survey all terrain effectively. Instead, we stand-
ardized survey coverage by specifying that the survey should
visually cover the entire block, that flight speed should be
maintained between 65 km/hour and 110 km/hour, with
multiples passes on contours at 100–300-m intervals.

Prior to the survey, nonsurvey personnel located each
GPS-collared mountain goat using standard VHF radio-
tracking methods. At that time, we reprogrammed each
GPS collar remotely to obtain a GPS fix every 10 minutes
during days scheduled for surveys in each area. We located
radiocollared mountain goats from a fixed-wing airplane
flown 300–1,200 m above terrain to minimize disturbance to
mountain goats prior to a survey.

We sent ground observers to locate mountain goats within
specified survey units and to monitor their movements and
group size before, during, and after the survey flight. We
instructed ground observers to search for mountain goats
within a survey block without disturbing mountain goat
activity and movements. If there were many groups available
to monitor within a survey unit, we asked ground observers
to select a group without collars, where they had
opportunity to get a complete count of the group, and a
group with low expected sightability (i.e., small Group Size,
bedded, presence of Vegetative or Terrain Obstruction).
The purpose of this selection was to increase our sample of
lower sightability groups. During the survey, at the time of
the closest pass of the helicopter to the group, ground
observers marked the location of the group on a 1:24,000-
scale topographic map and determined the group’s coor-
dinates using a transparent overlay grid. Ground observers
also judged their estimate of group size as complete,
probably complete, or incomplete based on their ability to
observe the entire group and surrounding terrain.

We recorded conditions relating to surveys and potential
predictors of sightability at 3 levels: for each flight, for each
survey block, and for each group of mountain goats
observed. For each flight, we recorded crew members’
names and functions (i.e., Pilot, Primary Observer, Secon-
dary Observer, and Navigator) and Aircraft type. When
starting to survey a block, we recorded Illumination (i.e.,
high- or low-contrast lighting), Cloud Cover (to the nearest
10%), Sky Conditions (i.e., clear, mostly clear, mostly
cloudy, overcast, or fog), Wind Conditions (i.e., calm, light,
moderate, or high), Precipitation (none, mist, or light rain)
and ambient Temperature. Usually we recorded Temper-
ature at 1,525 m, but if not, we also recorded the altitude at
which we recorded it. For each mountain goat group seen
we recorded Time, Group Size, and whether the group
contained a collared mountain goat (and the color code of its
collar). We also recorded Substrate (majority of animals on
rock, snow, herbaceous vegetation, or in forest), Vegetative
Obstruction (in 5 classes [%]): 0, 1–25, 26–50, 51–75, or
76–100 of the area encompassing a 10-m buffer around the
group capable of obscuring observation of a mountain goat
by observers in the helicopter), and whether Terrain

Obstruction was present within a 10-m buffer around the
group at the moment it was first seen. We defined Terrain
Obstruction as any landform (typically fissures, caves,
overhanging ledges, and other rock formations) capable of
obscuring a mountain goat from the air.

During the survey of each block, the navigator monitored
coverage of the block and maintained a GPS track of the
helicopter flight path using ArcGIS. When a group of
mountain goats was sighted, the navigator used a custom
Visual Basic for Applications (VBA) ArcGIS script to plot
the location and size of the group.

With the exception of the navigator, the survey crew was
not informed of the potential presence of collared mountain
goats in survey blocks. Upon completing the survey of all
blocks that potentially contained a collared mountain goat,
the navigator compared the list of collared mountain goats
seen during the survey with those expected on the basis of
the presurvey fixed-wing flight. By homing on the VHF
beacon, we located any collared mountain goats that were
not seen during the survey and recorded Group Size.
Because mountain goats are easily disturbed by helicopters
(Côté 1996, Goldstein et al. 2005), we did not feel confident
using the location of the collared mountain goat after the
survey to accurately reflect its location when not seen during
the survey. Instead, we downloaded the GPS location
history from the collar and, using another VBA script with
the helicopter flight track and the mountain goat GPS
record, found the mountain goat GPS fix corresponding to
the beginning of the 10-minute period during which the
helicopter and the mountain goat were closest to each other.
We considered this the location of the mountain goat when
it was not seen. The navigator directed the helicopter to
within 10 m of these coordinates, where we recorded the
Substrate, Vegetative Obstruction, and Terrain Obstruction
as above.

If ground observers were present, we contacted them by 2-
way radio after completing a survey of their block(s) and
asked them to provide the coordinates and Group Size of
the group they observed during the survey. Using the
ArcGIS VBA script, the navigator plotted this location and
determined if it corresponded to a group seen during the
survey. If we determined it was a group missed during the
survey the navigator and ground observer directed the pilot
to the location of the group where it was missed during the
survey and where we recorded Substrate, Vegetative
Obstruction, and Terrain Obstruction. For groups that
were not seen during the survey, we took Group Size from
the ground observer’s record.

Analysis
Variable treatment.—We modified several variables

prior to analysis. We transformed the Vegetative Obstruc-
tion classes into a continuous variable by assigning each
observation the value of the mid-point of its range (i.e.,
from 0, 1–25, 26–50, 51–75, or 76–100 to 0, 13, 38, 63, or
88). We adjusted Temperatures not recorded at 1,525 m to
1,525 m using the environmental adiabatic rate of 1.838 K/
100 m (Leeder and Pérez-Arlucea 2006). We rated survey
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crew members by experience: 0¼ flown ,5 survey days for
mountain goats or other ungulates, 1 ¼ flown ,5 survey
days for mountain goats but experienced (rated 2 or 3) in
aerial survey for other ungulates, 2¼ flown 5–10 survey days
for mountain goats, and 3 ¼ flown .10 survey days for
mountain goats; where a survey day is equivalent to about 4
hours of survey time. We calculated Crew Experience as the
sum of the experience of all 4 crew members and treated it as
a continuous variable.

When used as independent variables, ordinal variables
such as Pilot Experience must be considered as either
categorical or continuous. Because the number of experience
levels was small (i.e., 4), we considered them categorical. In
situations where values of categorical variables had ,10
observations (Hosmer and Lemeshow 2000), we combined
that value with an adjacent value (for those that were
originally ordinal) or a similar value (for truly categorical
variables) such that sample size distribution among values
was optimized.

We defined survey Intensity as the number of minutes of
flight divided by the area (km2) of the block. In some cases,
the intensive effort required to enumerate groups in high
vegetative cover resulted in excessively high and inaccurate
estimates of survey Intensity and potential for outliers.
Consequently, where Intensity was greater than the third
quartile þ 1.5 times the interquartile range (Moore and
McCabe 2006), we set Intensity to missing.

Model development.—Conceptually, we grouped inde-
pendent variables into 5 categories. Group Size and survey
Intensity were their own categories. Vegetation Obstruc-
tion, Terrain Obstruction, and Substrate were in the
Location category. Illumination, Cloud Cover, Sky Con-
ditions, Wind Conditions, Precipitation, Temperature, and
Time were in the Environment category. Aircraft, Pilot,
Primary Observer, Secondary Observer, Navigator, Pilot
Experience, Navigator Experience, Primary Observer Ex-
perience, Secondary Observer Experience, and Crew
Experience were in the Flight category.

To reduce the risk of over-fitting (Harrell 2001) we
restricted the selection of independent variables to �4 from
each variable category, on the basis of likely variable
redundancy and our expectation of the variable’s effect on
sightability. Because of its expected importance on sighting
probabilities (e.g., Samuel et al. 1987, Anderson and
Lindzey 1996, McCorquodale 2001, Udevitz et al. 2006,
Poole 2007), we included Group Size in every candidate
model. We constrained candidate models further so that
number of parameters did not exceed n/10, where n equals
the lesser of 1) number of groups seen, and 2) number of
groups not seen (Peduzzi et al. 1996, Harrell 2001). Due to
our limited sample size, we did not consider any covariate
interactions.

Our initial assumption was that Group Size had a
significant effect on mountain goat sightability. To check
this, we repeated the analysis with models in the confidence
set and corresponding models without Group Size. We also
determined that if models in the 0.95 confidence set

included variables from different categories of covariates,
we would assess additional models combining variables from
those categories. In addition, we retained a model with only
a Group Size effect because it was the only covariate
available from historic survey data.

For continuous covariates in candidate models, we checked
for linear effects under a logit model by dividing each
variable into 4–6 groups and examining the plot of the log-
odds for each group against the median value in each group
(Elswick et al. 1997, Hosmer and Lemeshow 2000). We
also checked for association between all variables occurring
in the same model and excluded models in which related
variables occurred. For comparisons of continuous covariate
pairs we used a criteria of r � 0.50, for continuous–
categorical comparisons we considered pairs in an analysis of
variance with R2 � 0.25 to be related, and for categorical–
categorical comparisons, we examined contingency tables to
evaluate association.

Imputation of missing values.—Missing values occurred
in the collected data (see Results). In performing model
selection by information-theoretic methods, available case
analysis (Harrell 2001, Horton and Kleinman 2007) is
unsuitable because the data set changes among models
(Burnham and Anderson 2002). Complete case analysis
yields estimates of lower precision and biased parameters
estimates unless missing values occur completely at random
(Harrell 2001, Schafer and Graham 2002, Horton and
Kleinman 2007). Using multiple imputation, multiple
analysis on imputed data sets can be combined to create
an inference that reflects sampling variability due to the
missing values (Schafer 1997, Horton and Kleinman 2007).
For these reasons, we used multiple imputation in our
analysis.

We used the R program (R Foundation for Statistical
Computing, Vienna, Austria) package MICE (van Buuren
and Oudshoorn 1999, 2000) to generate multiple imputed
data sets. The R package MICE uses the approach of
multiple imputation by chained equations, employing a
Gibbs sampler to impute missing values from a specified
model matrix. Following the advice of van Buuren and
Oudshoorn (1999), we specified the imputation model
matrix by considering all variables that had a reasonable
expectation of being related due to either our expectations
about mountain goat behavior or operational relationships.
For instance, mountain goat groups are typically smaller in
forested terrain, so we included Group Size in the
imputation model for Vegetative Obstruction and vice
versa. Similarly, time and temperature would be expected to
increase together, and should reference each other in the
imputation model matrix. On the other hand, we excluded
spurious relationships such as Group Size and Pilot
Experience. For each covariate, we specified the imputation
method according to its type (i.e., continuous variables using
Bayesian linear regression, categorical with 2 categories
using logistic regression, and categorical with .2 categories
using polytomous logistic regression) with the exception of
continuous covariates that were bounded (Group Size and
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Vegetative Obstruction) where we used predictive mean
matching (van Buuren and Oudshoorn 2000).

In multiple imputation, each parameter b is estimated as
the mean of the estimated parameter values across
imputations (Harrell 2001, Horton and Kleinman 2007).
The corresponding variance T of b is calculated as

T ¼ ð1� m�1ÞB þ U

where
B is the between-imputation variance,

ðm� 1Þ�1
Xm

j¼1
b̂j � b
� �2

;

U is the average within-imputation variance of b,

ðmÞ�1
Xm

j¼1
Û j ;

and m is the number of imputations (Harrell 2001, Kenward
and Carpenter 2007).

To evaluate the relationship between number of imputa-
tions and the variance of parameter estimates, we examined
plots of T as a function of m to evaluate the number of
imputations sufficient to produce a stable estimate of
parameter variance (T ).

As with other parameter estimates, we then averaged
Akaike’s Information Criterion (AICc) for each model
across imputations and calculated the difference between
these means and their minimum among models as DAICc

and used this for model selection and model weighting.
Model selection.—Although weighted model-averaging

can be performed across all candidate models (Burnham and
Anderson 2002), there are disadvantages to doing so. Not
only are estimation equations more complex than necessary,
there is little reason for aerial survey crews to continue to
collect data for covariates that have negligible effects on
estimation. Consequently, we determined a 95% confidence
set of models where, when ordered by DAICc, model weights
accumulated to �0.95 (Burnham and Anderson 2002), and
we model-averaged using weights recalculated within the
confidence set. To assess goodness-of-fit of the averaged
model, we performed the Hosmer–Lemeshow test (Hosmer
and Lemeshow 2000) using all observations with no missing
values for covariates in the confidence set.

Over- and under-counting.—Sightability models assume
that a group, if seen, is enumerated correctly (Cogan and
Diefenbach 1998). This may not be the case, especially if
terrain or vegetation obscures some animals completely. It is
also possible for some animals to be counted twice when
enumerating a large group as it fractures with subgroups
moving in different directions, as often happens with
mountain goats. Thus over-counting and under-counting
are both possible.

To test for bias resulting from counting error, we
compared Group Size determined by the survey crew
(GSS) with that of Group Size determined by ground
observers (GSG). Because GSS was occasionally much larger

than GSG, we eliminated from these comparisons all GSG

rated as incomplete, those rated as probably complete where
GSS was �50% larger than GSG, and those rated as
complete where GSS was �100% larger than GSG. For the
latter 2 conditions, we judged that the count difference was
more likely to have resulted from differences in group
delineation (survey and ground crews combined or separated
scattered animals into different group designations) than
from differences in enumeration of the same actual group of
mountain goats.

We then tested whether the slope of the regression of GSS

against GSG (no intercept) differed from one, after log-
transforming both to give a more even distribution of
observations across the scale of the comparison. Second, we
used a t-test (Zar 1996) to test the null hypothesis of
GSS � GSB ¼ 0.

Simulations.—We conducted simulations to assess the
magnitude of the effect of counting bias on population
estimates, to evaluate overall sightability for our mountain
goat surveys, and to estimate expected precision of resulting
estimates. For these simulations, we used survey records
from 127 blocks in 19 areas (i.e., geographic collections of
blocks) surveyed in 2004–2007, which consisted of 1,139
groups (205 of which were sightability trials) and 4,799
individuals.

Counting bias modeled by regressing aerial count on
ground count in the log scale assumes that bias relative to
group size increases with group size and errors were log-
normal, implying variability in bias increases with group
size. For count bias simulations, we took survey groups as
the true group size and drew groups from survey records to
simulate surveys of populations of 50 and 100 mountain
goats. To compensate for low representation of groups with
low sightability in survey records, we weighted drawing by
the inverse of the model-averaged detection probability (h;
Steinhorst and Samuel 1989) for each group. For each
mountain goat group in each population, we assigned a true
sightability based on the group’s covariate values and a
multivariate normal draw (R package MASS) from the
parameter distributions for the averaged model (see Results).
We then scored each group in the population as seen if its
true sightability was greater than a random uniform (0,1)
variable. We then simulated biased aerial survey count for
each group 50 times, based on the t-distribution of the
estimated mean log aerial count for that group size from the
bias regression model. Finally, we estimated the population
by applying the averaged model to the seen groups for both
unbiased and biased group counts and estimated percent bias
as biased�unbiased

unbiased
100 and did this 250 times.

For sightability simulations, we partitioned survey records
into groups of low, medium, and high sightability (p groups)
because sightability varies geographically with conditions in
different parts of mountain goat range. We partitioned
survey records by minimizing the sum of squared errors of
expected sightability (p) within p groups to form 3 groups
while keeping all records from each area together (platform
Partition in JMP, v7.0; SAS Institute, Cary, NC). For each
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p group and for all surveys, we estimated typical sightability
for groups and individuals by averaging expected sightability
and dividing the total number of animals seen by the
sightability-adjusted estimate.

To assess expected precision of sightability-adjusted
estimates we simulated populations to be surveyed for each
p group by drawing from the collection of survey records as
we did for bias simulations. For each p group, we simulated
populations of 25, 50, 100, 250, and 500 mountain goats by
drawing from the survey records in that p group, repeating
this 350 times for 1–6 replicate surveys. We calculated
variance of the estimates using the formulas of Steinhorst
and Samuel (1989) and for the average estimate over
replicated surveys we added an additional variance term
because of the correlation among replicates, which will be
the subject of another report. As a measure of precision, we
used a confidence interval coefficient of variation (CICV),
defined as half the 95% confidence interval divided by the
estimate. We calculated the mean CICV for each popula-
tion size, p group, and number of replicates among the 350
simulations. We also estimated the probability of the point
estimate deviating from the population size by .625%.

RESULTS

We acquired 205 observations for sightability evaluation of
which 161 (79%) were of groups seen during surveys. Of
205 observations, 115 were of groups with a collared
mountain goat, 84 were of groups watched by ground
observers, and 6 were both. Collar and ground observer
groups were seen at similar rates (79% and 77%,
respectively). The values of covariates recorded during
sightability surveys covered a range of values (Tables 1 and
2).

Only Environment and Flight covariate categories had .4
variables. Of the Environment variables, we discarded
Cloud Cover and Sky Conditions as redundant with
Illumination. Only 4 observations had Precipitation other
than none, so we discarded it. Of the remaining, we judged
Wind Conditions least likely to affect sightability, leaving
Illumination, Temperature, and Time for candidate model
development. For the Flight category, we chose Aircraft,
Primary Observer Experience, Pilot Experience, and Crew
Experience. We did not attempt to test for individual crew
member effects. Altogether, 42 individuals participated as
crew members.

Of continuous covariates (i.e., Group Size, Vegetative
Obstruction, Temperature, Time, and Intensity) only
Intensity appeared nonlinear in the logit. Log-odds were
lower for the lowest and highest Intensity groups than for
intermediate levels. Although we found lack of independ-
ence among some pairs of covariates, none of these pairs
occurred in our candidates, resulting in 17 candidate models
(Table 3).

Among covariates, the rate of missing values ranged 0–5%
(Tables 1 and 2). We considered all missing values to be
missing at random (Schafer and Graham 2002). Substrate,
Time, Terrain Obstruction, Vegetative Obstruction, Illumi-
nation, and Temperature were missing when the Secondary
Observer neglected to record them. Group Size was missing
when groups that were not seen were in thick vegetation and
no animals could be located after the survey. Within the set
of group sizes that occur under these conditions, we judged
there was no relationship between the size of the group and
the fact that its size was missing.

We found that variance estimates for parameters stabilized
after 10 imputations. This is similar to that found in other
multiple imputation implementations (Schafer 1999, Ken-
ward and Carpenter 2007).

The best models among our candidates were Group Sizeþ
Vegetative Obstruction þ Terrain Obstruction, followed by
Group Size þ Terrain Obstruction. These 2 models
constituted the 0.95 confidence set (Table 3). Within this
confidence set, recalculated Akaike model weights were
0.765 and 0.235 for the 2 models, respectively. Other
models were not plausible, given our data (DAICc . 4; Table
3). Parameter estimates indicated that sightability increased
with group size and decreased with Vegetative Obstruction
and Terrain Obstruction (Tables 4 and 5; Fig. 1). The
Hosmer–Lemeshow goodness-of-fit test of the averaged
model for available cases indicated close agreement between
observed and predicted sighting probability within each

Table 1. Values of continuous covariates in 205 observations of mountain
goat sightability in Washington, USA (2004–2007).

Variable x̄ Median Range n missing

Group Size 8.2 4 1–53 6
Vegetative Obstruction (%)a 18.8 13 0–88 7
Temp (8 C) 12.1 11 0.8–23.9 6
Time 0848 0805 0600–1600 10
Crew Experience 7.5 8 2–12 0
Intensity (min/km2) 3.7 3.3 0.7–8.1 8b

a After transformation to midpoint of class.
b Calculated values that qualified as outliers.

Table 2. Observed values of categorical covariates in 205 observations of
mountain goat sightability in Washington, USA (2004–2007).

Variable Values n %
a n missing

Terrain Yes 84 43 9
Obstruction No 112 57

Substrate Snow 9 5 10
Herbaceous 29 15

Forest 33 17
Rock 124 64

Illumination High 163 82 6
Low 36 18

Primary 1 40 20 0
Observer 2 57 28
Experienceb 3 108 53

Pilot 0 42 20 0
Experience 2 14 7

3 149 73
Aircraft Enstrom 480 25 12 0

Hughes 500 55 27
Jet Ranger 125 61

a % of nonmissing values.
b As a consequence of low sample size in one category, we combined the

Primary Observer Experience of 0 (n ¼ 4) with that of 1 (n¼ 36).
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decile of covariate pattern (Table 6) and overall, v2
8¼3.961,

P ¼ 0.861, n ¼ 191.
In post hoc model comparisons, models without Group

Size had considerably higher DAICc than those that included
Group Size. For the Terrain Obstruction model, DAICc was
18.4 and for Vegetative Obstructionþ Terrain Obstruction
it was 15.8. Relative importance of Group Size, Vegetative
Obstruction, and Terrain Obstruction in determining
sightability can be assessed by the DAICc of the model
lacking each term but including the other terms in the most
parsimonious model (i.e., Group Size DAICc¼ 15.8, Terrain
Obstruction DAICc ¼ 6.2, and Vegetative Obstruction
DAICc ¼ 2.4; Table 3; Fig. 1).

All covariates in our model confidence set were from the
same variable category (Location). Consequently, we

developed no additional post hoc models on the basis of
competitive models including variables from different
categories.

For the model with only a Group Size effect, the
coefficient for the intercept was 0.482 (SE ¼ 0.270, 95%
CI¼�0.047–1.010) and that for Group Size was 0.167 (SE
¼ 0.060, 95% CI¼�0.049–0.285). Covariance of intercept
and Group Size was �0.012.

In the comparison of group size counts between ground
and aerial survey observations, we deleted 4 observations on
the basis of our criteria. The resulting data had n¼ 66 pairs.
The slope of the regression of log-transformed GSS against
GSG (b¼ 0.962, SE¼ 0.013) was different from one (t65¼
�3.017, P ¼ 0.004). We used Cook’s distance (.1) to
identify one influential observation, which was suspect
because it represented an unlikely degree of under-counting
(GSG ¼ 18, GSS ¼ 6). With this influential observation
removed, the slope changed to 0.977 (SE ¼ 0.009, t64 ¼
�2.515, P¼ 0.014). For a¼ 0.05, mean difference between
GSS and GSG was not different from zero (x̄¼�0.455, SE
¼ 0.257, t65¼�1.772, P ¼ 0.081).

Simulations of counting bias for populations of 50 and 100
mountain goats yielded a mean estimated bias of �3.64%
for 50 (min. ¼�2.21%, max. ¼�4.99%) and �4.57% for
100 (min. ¼ �3.71%, max. ¼ �5.66%). With the
questionable data point excluded, estimated bias was
reduced to �1.96% for 50 (min. ¼ �1.04%, max. ¼
�2.66%) and �2.56% for 100 (min. ¼ �1.88%, max. ¼
�3.51%).

During mountain goat surveys in 2004–2007 in the
Cascade and Olympic Ranges, mean group sightability
ranged 0.708–0.819 among p groups, whereas individual

Table 3. Candidate models for mountain goat sightability (Washington,
USA, 2004–2007) considered a priori with number of parameters (K ),
covariate category, DAICc,

a and model weight (wi ).

Model K Category DAICc wi

Group Size þ Vegetative Obstruction
þ Terrain Obstruction 4 Location 0.0 0.733

Group Size þ Terrain Obstruction 3 Location 2.4 0.225
Group Size þ Vegetative Obstruction 3 Location 6.2 0.033
Group Size 2 Group Size 12.2 0.002
Group Size þ Pilot Experience 4 Flight 12.4 0.002
Group Size þ Substrate 5 Location 13.3 0.001
Group Size þ Time 3 Environment 13.9 ,0.001
Group Size þ Temperature 3 Environment 14.0 ,0.001
Group Size þ Illumination 3 Environment 14.2 ,0.001
Group Size þ Crew Experience 3 Flight 14.2 ,0.001
Group Size þ Intensity 3 Intensity 14.2 ,0.001
Group Size þ Intensity þ Intensity2 4 Intensity 15.0 ,0.001
Group Size þ Primary Observer

Experience 4 Flight 15.6 ,0.001
Group Size þ Temperature þ Time 4 Environment 15.7 ,0.001
Group Size þ Aircraft 4 Flight 15.8 ,0.001
Group Size þ Illumination þ Time 4 Environment 15.9 ,0.001
Group Size þ Illumination
þ Temperature 4 Environment 16.0 ,0.001

a Difference between averaged Akaike’s Information Criterion for each
model across imputations and their minimum among models.

Table 4. Parameter estimates for mountain goat sightability models in the
0.95 confidence set and model-averaged parameters (Washington, USA,
2004–2007).

Model and variable Estimate SE 95% CI

Group Size þ Vegetative Obstruction þ Terrain Obstruction

Intercept 1.447 0.390 0.681–2.212
Group Size 0.157 0.060 0.039–0.275
Terrain Obstruction �1.101 0.399 �1.883 to �0.318
Vegetative Obstruction �0.015 0.007 �0.030 to �0.001

Group Size þ Terrain Obstruction

Intercept 1.184 0.368 0.463–1.906
Group Size 0.161 0.062 0.039–0.284
Terrain Obstruction �1.261 0.388 �2.021 to �0.501

Model-averaged

Intercept 1.385 0.401 0.599–2.171
Group Size 0.158 0.061 0.039–0.277
Terrain Obstruction �1.138 0.402 �1.927 to �0.350
Vegetative Obstruction �0.012 0.009 �0.029–0.006

Table 5. Covariance matrix for mountain goat sightability model
parameters after model-averaging in the confidence set (Washington,
USA, 2004–2007).

Parameter Intercept
Group

Size
Terrain

Obstruction
Vegetative

Obstruction

Intercept 0.161 �0.013 �0.090 �0.001
Group Size �0.013 0.004 �0.001 0.000
Terrain Obstruction �0.090 �0.001 0.162 �0.000
Vegetative Obstruction �0.001 0.000 �0.000 0.000

Figure 1. Probability of a mountain goat group being seen as a function of
Group Size, Vegetative Obstruction, and Terrain Obstruction estimated by
model-averaged parameters from the confidence set based on 205
observations in Washington, USA, 2004–2007.
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sightability ranged 0.746–0.912 (Table 7). Among the 17
survey areas with .10 groups recorded, these ranges were
0.639–0.846 and 0.646–0.948, respectively.

Within each p group, the CICV declined with population
size and number of replicate surveys (Table 8). In assessing
substantial deviations (625%) of the estimate from the
population size, probability of a survey estimate being
,75% of the population size (�25% error) was .0.05 for
populations of 25 for all p groups when the number of
replicates was ,3 and for populations of 50 when the
number of replicates was ,2. Probability of a survey
estimate being ,75% of the population size was .0.10
only for populations of 25 for Low and Medium p groups
when the number of replicates was ,2. Probability of a
survey estimate being .125% of the population size (þ25%
error) was .0.05 for populations of 25 for Low and
Medium p groups when the number of replicates was ,2.
This probability was ,0.10 for all populations and p groups.

DISCUSSION

Mountain goat sightability during helicopter surveys was
determined primarily by Group Size, Terrain Obstruction,
and Vegetative Obstruction. Counting bias may occur, but
its effects on using a sightability model for mountain goat
population estimation are probably minor. Because of
variation in terrain mountain goats occupy, sightability
varies geographically. Hence, the degree of adjustment to
the survey for population estimation and the precision of the
estimate will also vary among survey areas.

We evaluated and estimated sightability bias associated
with helicopter surveys of mountain goats as they are
practiced throughout Washington and many adjoining
regions. Unlike some other survey evaluations (Samuel et
al. 1987, Poole et al. 2000, Gonzalez-Voyer et al. 2001,
Udevitz et al. 2006, Poole 2007), we used many personnel
and 3 helicopter types. This may have increased variability in
our assessment but should make application of our model
suitable to a wide variety of circumstances. Because we
found no significant effect of helicopters, survey crew
experience, or survey intensity, it seems likely that our
model will be applicable in other parts of the mountain
goat’s range. Nevertheless, we caution against uncritical
application of our sightability models to other regions.

Group Size was the key factor affecting sightability of
mountain goats during aerial surveys, similar to effects
documented for mountain goats and other species (e.g.,
Samuel et al. 1987, Anderson and Lindzey 1996, McCor-
quodale 2001, Udevitz et al. 2006, Poole 2007). Vegetative
Obstruction was in only 1 of the 2 models in the confidence

Table 6. Hosmer–Lemeshow goodness-of-fit for the Akaike’s Information Criterion (AIC) weight-averaged model of mountain goat sightability
(Washington, USA, 2004–2007).

Decile mean
Detection
probability Proportion seen n

Contribution
to the v2 scoreGroup Size Vegetative Obstruction Terrain Obstruction

1.74 53.79 1.00 0.474 0.526 19 0.207
2.00 16.18 1.00 0.592 0.682 22 0.728
3.58 23.32 0.84 0.672 0.632 19 0.142
2.95 22.59 0.32 0.772 0.727 22 0.249
2.74 9.37 0.16 0.822 0.842 19 0.055
4.10 3.67 0.19 0.855 0.905 21 0.426
6.00 12.11 0.06 0.892 0.833 18 0.651

11.28 12.78 0.17 0.943 1.000 18 1.095
19.16 18.74 0.16 0.980 1.000 19 0.392
39.07 9.14 0.14 0.999 1.000 14 0.016

Table 7. Number of groups counted, total mountain goats counted, average
estimated sightability for groups (p), sightability-adjusted estimate, and
individual mountain goat sightability by survey areas divided into p groups
of low, medium, and high sightability from all mountain goat survey records
in the Cascade and Olympic ranges in Washington, USA, 2004–2007.

p group Groups Total p Estimate
Individual
sightability

Low 383 1,062 0.708 1,423 0.746
Medium 402 1,410 0.770 1,699 0.830
High 354 2,327 0.819 2,550 0.912
All 1,139 4,799 0.764 5,672 0.846

Table 8. Confidence interval coefficient of variation (CICV, i.e., half the
95% CI divided by the population estimate) for mountain goat surveys of
areas with low, medium, and high sightability (p group) by the number of
survey replicates and population size (Washington, USA, 2004–2007).

p group
Replicate

surveys

Population size

25 50 100 250 500

Low 1 0.45 0.32 0.24 0.18 0.15
2 0.33 0.24 0.18 0.14 0.12
3 0.27 0.20 0.15 0.12 0.10
4 0.23 0.17 0.13 0.10 0.09
5 0.21 0.16 0.12 0.09 0.08

Medium 1 0.38 0.27 0.19 0.13 0.10
2 0.28 0.20 0.14 0.10 0.08
3 0.23 0.16 0.12 0.08 0.07
4 0.20 0.14 0.10 0.07 0.06
5 0.18 0.13 0.09 0.06 0.05

High 1 0.34 0.22 0.15 0.10 0.07
2 0.25 0.16 0.11 0.07 0.05
3 0.21 0.13 0.09 0.06 0.04
4 0.18 0.12 0.08 0.05 0.04
5 0.16 0.10 0.07 0.05 0.03
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set and may be of lesser importance for mountain goats than
other species because mountain goats are usually surveyed in
areas with low or sparse vegetation. Terrain Obstruction was
second in importance to Group Size in determining
sightability. Terrain Obstruction in the form of fissures,
crevasses, caves, overhanging ledges, and other rock
formations is an important feature of mountain goat
habitats, and we occasionally observed mountain goats
seeking topographic cover in response to survey disturbance.
We described Terrain Obstruction as presence or absence,
but given the importance of such terrain both to mountain
goats and sightability, it may be useful to develop a more
fine-scaled metric of terrain in future efforts to model
sightability.

Our estimates of sightability (0.75–0.91) were generally
higher than those from other studies, which was true for
previous estimates in Washington (0.63 and 0.66; Johnson
1983, Houston et al. 1986) and elsewhere (0.59–0.69;
Cichowski et al. 1994, Poole et al. 2000, Gonzalez-Voyer et
al. 2001, Pauley and Crenshaw 2006, Poole 2007). Notably,
previous estimates of detection biases in Washington
(Nason Ridge and the Olympics; Johnson 1983 and
Houston et al. 1986) were derived predominately in areas
we classified as having low sightability (i.e., low p group).
Hence, there was less difference between previous estimates
of detection bias compared to our estimates of the low p
group (0.75) than to our overall estimates (0.75–0.91).
Furthermore, we censored 11 trials of sightability bias from
our computations because collared goats were outside the
sampling frame (blocks) and were not valid trials of
sightability. Previous estimates derived from population
reconstruction (Houston et al. 1986) or proportional
observations of marked animals computed detection bias at
the population level rather than for a specific sampling
frame. Hence our estimates, although likely representative
of true detection biases within the sampled population, may
be conservative at the population level if mountain goats
occasionally descend to low elevations outside the sampling
frame.

The only previous study of covariates affecting aerial
sightability of mountain goats indicated that groups size,
vegetation, and activity class (i.e., bedded, standing, or
moving) all affected sightability (Poole 2007). We recorded
activity class during surveys but found no reliable method for
assessing activity of animals in missed groups. Mountain
goats react to helicopters, especially at distances common
during aerial surveys, although such disturbance is typically
of short duration (Goldstein et al. 2005). Consequently,
there is a high probability of change in activity between
over-flight and the end of the survey, and assessing activity
of missed groups by documenting it after the survey is likely
to be misleading. In our trials, ground observers recorded
activity of most mountain goats in a group at the time of the
closest pass of the helicopter, but our records for groups seen
from both the air and ground showed that ground observers
classified a higher proportion of groups as inactive (bedded)
compared to aerial observers, calling into question the

ground observers’ classification of groups that were missed.
Also, although we could estimate activity of collared animals
on the basis of accelerometers on the collars, these had a
resolution to 5 minutes, which was too coarse to assign
activity at the time of over-flight.

By all measures, nearly all mountain goats were active
during helicopter surveys. In our sightability data 94% of
nonmissing values (n ¼ 188) were active. In the mountain
goat surveys we conducted in 2004–2007, 95% of 1,135
groups were active and 96% of 4,793 mountain goats seen
were in active groups. Consequently, any effect of activity on
sightability would have little effect on population estimates.

Despite evidence for negative bias in aerial counts of
mountain goats within groups, our simulations indicated
that the effect of under-counting on population estimation
for typical goat populations was expected to be small
(�1.96 to�4.57%). The wider range of percent bias from all
simulated populations (min. ¼ �1.04%, max. ¼ �5.66%)
reflect combined effects of lack of precision in our estimate
of counting bias due to problems we encountered with the
data set (true group size can be difficult to determine) and
influence of the group composition of a given population.
We conclude counting bias is low in mountain goat surveys
but more data are needed to better estimate the counting
error.

Our simulations provide guidance for survey design given
confidence criteria, estimates of population size, and
expected sightability (Table 8). For example, if it is desired
to have the confidence interval of �610% of the estimate,
for a population of 250 in an area with medium expected
sightability, 2 replicate surveys are indicated. Likewise, this
level of precision cannot be expected for small populations
(e.g., 25), even with 5 replicate surveys, regardless of p
group. Generally, the decrease in CICV for a given p group
and population size was a nearly linear function of ln(n
replicates), so the increase in precision was considerably
greater between 1 and 2 replicates than between 2 and 3, et
cetera. Due to the lack of precision of estimates for small
populations, reliable population estimation and manage-
ment of small population segments remain a challenge.

Replicate surveys are typically not flown due to cost
constraints, and most mountain goat populations are in the
25–100 range. Under these conditions, confidence intervals
are likely to be greater than most managers would like to see
(615–45%) and may lead to questions of the utility of the
sightability approach to mountain goat population estima-
tion. These confidence intervals are derived from 2 sources
of variability associated with sightability (uncertainty of
sighting a group) and the logistic model (Steinhorst and
Samuel 1989:422). For unreplicated surveys of populations
of 25–100 the sightability variance component in our
simulations averaged 76–94% of total variance. Thus,
variability in the adjusted estimates was primarily derived
from whether or not a group was seen (sightability) as
opposed to variability from adjusting survey counts for
missed groups (model). Consequently, most of the varia-
bility is inherent in using helicopters for surveying mountain
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goat populations and the primary benefit of employing a
sightability model may be in providing precision of the
estimate compared with providing an adjusted estimate.

MANAGEMENT IMPLICATIONS

Mountain goats are monitored throughout much of their
range in support of diverse management objectives that
range from establishing acceptable harvest (Washington
Department of Fish and Wildlife 2003) to controlling
populations considered excessive (Houston et al. 1991).
Because survey conditions vary from year to year in terms of
group size composition, terrain, and vegetation in which
mountain goats are located, a fixed correction factor for
mountain goats is likely to result in erratic estimates.
Variation due to sampling error is to be expected, especially
when surveying small populations, but estimating and
correcting for sightability biases should reduce variability
among annual estimates by accounting for changing goat
population characteristics, distributions, and environments
and should improve power to detect trends in population
size. Our findings also indicate that fixed correction factors
can lead to erroneous estimation if applied outside the area
they were developed or to subdivisions of that area. Our
simulations suggest that probabilities of deviation from the
estimate of .625% were not large, even for small
populations. Thus, the risk of making management assess-
ments on the basis of highly erroneous estimates is low. We
therefore feel that sightability-based estimates, which
provide greater consistency, and an estimate of precision
of population estimates, should be a valuable contribution to
mountain goat population management efforts, whether the
goal is harvest management, recovery, or population control.
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