Salmon Recovery in Washington State

Jeremy Cram Jeremy.cram@dfw.wa.gov Salmon Recovery Policy Lead, Director's Office February 4, 2025

Lead Entities and Salmon Recovery

Lead Entity Watersheds

- Develop watershed-scale recovery actions
- Build partnerships and trust
- Local science and community priorities
- Prioritize projects to maximize public's investments

Local Implementing Partners

- Conservation Districts, Regional Fish Enhancement Groups (RFEGs), Land Trusts, Local Governments, etc.
- Secure grants, implement projects, and build local partnerships and volunteer networks

SALMON STRATEGY PRIORITIES

Protect & restore vital salmon habitat

Invest in clean water infrastructure

Correct fish passage barriers & restore access

Build climate resiliency

Align harvest, hatcheries, & hydropower

Address predation & food web issues

Enhance commitments & coordination across programs

Strengthen science, monitoring, & accountability

IN CRISIS

NOT KEEPING PACE

MAKING PROGRESS

APPROACHING GOAL

Biennial Funding for Habitat Restoration

Voluntary incentive salmon restoration programs

Salmon Recovery Priorities

WDFW Salmon Recovery Priorities

- Fish population monitoring
- Fishery and hatchery reform
- Population viability modeling
- Collaboration with external partners
- Emerging threats
 - Toxics
 - Food web issues
- Climate change
- Fish passage and survival at dams
- Habitat restoration, protection, and monitoring

Strengthen Science, Monitoring, and Accountability

Using a Life Cycle Model to Identify Survival Bottlenecks

b. Viability Curve including minimum population threshold of 1,000 spawners for use with Large- sized chinook populations.

Figure 1. Matrix of possible Abundance/Productivity and Spatial structure/Diversity scores for application at the population level. Percentages for abundance and productivity (A/P) scores represent the probability of extinction in a 100-year time period. Cells that contain a "V" are considered viable combinations; "HV" indicates Highly Viable combinations; "M*" indicates combinations that can be regarded as candidates for "maintained." The darkest cells represent combinations of A/P and SSD at greatest risk.

		Very Low	Low	Moderate	High
Abundance/ Productivity Risk	Very Low (<1%)	HV	HV	v	M*
	Low (1-5%)	v	v	v	М*
	Moderate (6 – 25%)	M*	M*	M*	
	High (>25%)				

Spatial Structure/Diversity Risk

Fish and Habitat Science

Co-Managing Sustainable Fisheries

- Comanagement of fisheries in WA with Treaty Tribes
 - Pre-season negotiations and inseason management
 - Conservation goals
 - SRKW
- Modernizing data systems and reporting
- ESA-compliant fishery modeling
- Sustainable commercial and recreational opportunities

Align Hatcheries and Harvest with Salmon Recovery

- Landin

a -

THE PARTY

Protect and Restore Vital Salmon Habitat

- Priority Habitats and Species
- Riparian science and policy
- Water science and policy
- Net Ecological Gain proviso
- Technical guidance for local governments
- Restoration implementation and guidance
- Synthesizing data for evaluation and prioritization

Brian Abbott Fish Barrier Removal Board

Passage

Compliance with the culvert injunction

Reintroduction in the Upper Columbia

Statewide Fish Passage Strategy

10 A ROB

Invest in Clean Water Infrastructure

Washington Department of

- Where are toxics affecting salmon and salmon habitat?
- How well are remediation efforts working?
- What are the effects on salmon population viability?

Build Climate Resiliency

The second second second second

Restore streamflow

- Drought response preparedness
 - **Climate resilient hatcheries**
 - **Climate resilient watersheds**

The Future of Instream Water in Washington State

A Brief for Policy Makers August 2022

Technical Editors Kiza Gates, PhD Timothy Quinn, PhD Nicholas Georgiadis, PhD Production Manager Brad Kahn

Address Predation and Food Web Issues

Survival of adult spring-summer Chinook upstream from Astoria to passing Bonneville 2010–2015

Assessing how population-specific migration timing affects survival

Predicted population-specific annual survival

Compensatory vs. Additive Mortality

What proportion would have died anyway

- Assume:
 - 20 STHD released from RIS
 - Without terns, 25% will survive
 - Breeding terns need 4 fish (i.e. 25%)
 - Target fish more or less at random => partially additive (a=0.25)
- With a "random sample" survival rate = additivity rate
- On a long enough timeline, additivity necessarily goes to zero

THAT SALMON YOU'RE EATING MAY BE COMING OFF SOMEONE ELSE'S PLATE ...

