

SALISH SEA MARINE SURVIVAL PROJECT

A Salish Sea-wide anomaly

Pacific Ocean

Strait of Georgia

Juan de Fuca Strait

The Salish Sea

Puget Sound

Decline in Salish Sea Marine Survival

Other known significant changes in the Salish Sea

What are primary factors affecting juvenile Chinook, coho & steelhead survival in the Salish Sea marine environment?

Funding Status

Highlights

- \$5 M Southern Endowment Fund Pacific Salmon Treaty – split between US and Canada
- \$1.6 M Washington State legislature
- 1:1 in-kind match by participating entities

Objectives

Advance wild salmon recovery and sustainable fisheries

- What happened since the 1980's and can we improve the situation for juvenile Chinook, coho and steelhead?
- How do we improve the accuracy of adult return forecasting with early marine survival data: to better manage harvest, hatcheries and natural spawning?

Hypotheses

- A. Bottom-up processes that drive Chinook, coho and forage fish prey availability have changed, and salmon aren't able to compensate.
- **B.** Top-down processes contributing More predators making situation worse. Eating larger juvenile steelhead, resident salmon and forage fish.
- C. Other factors may compound the problem:
 - Microbes & disease
 - Toxics
 - Habitat degradation (role of estuaries?)

Ultimately, must weigh the contribution of:

- Local, human influence (water quality, predator management, hatchery management)
- Regional or global impacts (climate change, ocean acidification, natural cycles)

Research Framework

Research Highlights

- Survival analyses nearly complete
- Improving physical>biological connection
- Growth & survival studies underway
- Citizen Science in Strait of Georgia
- Sound-wide zooplankton program implemented
- Sound-wide contaminants assessment complete
- New tech Seal head mounted PIT tag reader
- 9 Puget Sound steelhead studies

Growth & Survival: Building out from rivers

Upgraded Acoustic Receiver Arrays

Puget Sound Steelhead

Steelhead Activities & Findings

9 Puget Sound steelhead studies to:

- 1. Assess correlations between survival and ecosystem & fish characteristics
- 2. Identify locations, rate and timing of mortality
- 3. Evaluate disease, toxic contaminants, genetics, and predator-prey interactions to reveal the direct and underlying causes of mortality

Abundance trends – South to North

Declines increase from North to South Puget Sound

Environmental indicators & survival

Indicators "with long-term data-sets"

Kendall et al. (WDFW)

Smolt migration & survival

Moore et al. (Mar. Ecol. Prog. Ser. In review)

Freshwater and Marine Factors

<complex-block>

Key Findings

- ✓ Migration rate is very rapid about 2 weeks
- ✓ Survival of Puget Sound steelhead smolts to the Pacific Ocean is low Green – 17%, Nisqually – 6%)
- ✓ No apparent effects of population, translocation, or body size
- ✓ Release date was moderately important
- ✓ Highest mortality rates in the first marine segment
- Longer migrations through Puget Sound are associated with higher mortality

Moore et al. (in prep)

Where is mortality most acute?

% mortality/km

Abnormal tag 'behavior' patterns

15813

Identifying potential predators

<u> Top</u>

Harbor seal

Double-crested & Brandt's cormorants

Caspian terns

<u>Secondary</u>

Harbor porpoise

Common murre

Pearson et al. (WDFW)

Steelhead and Seals

= Steelhead

= Harbor Seals

Warning: Correlation \neq Causation

Steelhead and Seals

Berejikian, Moore, and Jeffries (in prep)

What is the role of fish condition?

Fish Health - Design

Sampling Design

5 Puget Sound watersheds

Traps

Lower River / Estuary

3 Offshore Areas

Whidbey Basin
 Green / Duwamish
 Nisqually

Steelhead **PCB levels** generally low: <u>1.4 – 2.2x **lower**</u> than Chinook at same locations.

16.7% Central and 25% South Puget Sound samples exceeded PCB adverse effects threshold.

Steelhead **PBDE levels** high in Nisqually, and <u>1.1 to 3 times **higher**</u> than Chinook at same locations.

 25% Central and South Puget Sound, and 33% Nisqually River samples = increased disease susceptibility

33% Nisqually estuary samples = altered thyroid production

O'Neil et al (WDFW)

Fish Health - Contaminants

Nanophyetus (parasite)

Key = 0, medium, high, very high

Infection prevalence

Parasite load

Findings

- No Nanophyetus in Skagit, Snohomish, Tahuya, Whidbey Basin
- Prevalence and parasite loads increase from trap to estuary in Green.
- ✓ Prevalence and parasite loads in Nisqually extremely high.

Chen (NWIFC) and Hershberger (USGS)

Fish Health - Disease

Prevalence of other features

Key = 0-20%, 20-40%, 40-60%, >60%

] Nanophyetus

 Δ Kidney Myxosporean

 $\stackrel{\wedge}{\searrow}$ Sanguinicola

Gill inflammation

 $\stackrel{ imes}{
ightarrow}$ Heart inflammation

Findings

- Many fish from Green and Nisqually with Nanophyetus exhibit gill & heart inflammation.
- Heart & gill inflammation could be indication of compromised swimming performance.

Chen (NWIFC) and Hershberger (USGS)

Fish Health - Disease

Genome-Wide Association Study Survivors vs Non-survivors (Methods)

- Genome-wide association studies (GWAS) ask:
 - Is there an significant correlation between genetic "fingerprints" and phenotype, behavior, life history . . . ?
 - For this specific study: between steelhead smolt genotypes and their fate (survival v. mortality) in Puget Sound?
- Acoustically tagged smolts
- Mortality = no detections in Puget Sound
- Survival = detection at last (SJF) array
- Genomic sequencing (~ 5700 "genes")
- Six analyses with different grouping factors

Warheit (WDFW)

Genome-Wide Association Study

Survivors vs Non-survivors (samples and detection locations)

Genome-Wide Association Study

Survivors vs Non-survivors (Are there genetic differences?)

Expected -Log₁₀(p-value) – assuming uniform distribution and no association

Observed -Log₁₀(p-value)

Genome-Wide Association Study

Survivors vs Non-survivors (What are these genes?)

Sequence Alignment with NCBI (NIH) database using BLAST

- 1. Morphogenesis. Possibly involved with fin development. Swim performance?
- 2. Possibly immunological
- 3. No alignment with salmonid sequences in NCBI database
- 4. Immunological or morphogenesis

Conclusions - Steelhead

- Worse South Better North abundance (and survival) trends help hone in on mortality drivers.
- Reciprocal transplant suggests marine mortality driver and illustrates increased death by distance traveled through Puget Sound.
- Disease prevalence and associated fish condition (compromised gills, heart) may make South to Central Sound Puget Sound populations more vulnerable to predation. PBDE levels may contribute in Nisqually.
- Smolts in some populations with particular genetic fingerprints may be compromised by their morphology (fin development) or immunological responses making them sick or more vulnerable to predation.
- Predation occurring and may include multiple predators. Pop. increase, distribution, prey range, presence during steelhead outmigration, encounters, abnormal tag behavior, and stationary tag detection locations suggest harbor seals a likely predator. Harbor porpoises, cormorants, loons, common murres not studied. Of those, harbor porpoises w/ significant increase in population presence/distribution in Puget Sound.
- Correlational relationships may help put current findings in ecosystem change context and suggest potential drivers: + herring, - hatchery coho releases, + harbor seal.

Thank You!

Visit <u>marinesurvivalproject.com</u> for more information.

- Salmon, steelhead and their prey are being collected as the fish migrate downriver and through estuaries, nearshore and into the offshore.
- Commercial fishermen and the Canadian Coast Guard have mobilized large vessels to help offshore.
- Acoustic arrays have been installed and are tracking fish movement and survival.
- Buoys and oceanographic moorings are being deployed, and a citizen science program implemented to monitor marine conditions.
- Innovative technology is being developed and implemented, including radio-tag satellite devices to count fish consumed by seals and cutting-edge
 genomics to study disease and survival traits.

© 2015 Salish Sea Marine Survival Project

Contact Us / Researcher acces