Management Objectives for Salmon and Steelhead

On the Dynamics of Exploited Fish Populations

Raymond J.H. Beverton Emeritus Professor of Fisheries Ecology University of Wales

and

Sidney J. Holt Senior Scientific Advisor to the International Fund for Animal Welfare

The investigations described in this book were undertaken during the years 1947–1953, during the first half of which both authors were on the staff of the MAFF Fisheries Research Laboratory, Lowestoft, Suffolk, UK. The MS was submitted for publication by HMSO in 1954.

Carl J. Walters and Steven J. D. Martell

Jim Scott, Special Assistant Director's Office

Presentation Outline

- Why Set Management Objectives?
- Spawner-Recruit Fundamentals
- 8 Key Points

Why Set Management Objectives?

PACIFIC HALIBUT AND THE THOMPSON-BURKENROAD DEBATE

Pacific halibut is one of the most valuable fisheries in the north Pacific, apparently involving one major stock distributed from Alaska to British Columbia. It has been intensively monitored and managed since the middle of the last century by the International Pacific Halibut Commission (IPHC). It has shown a striking, cyclic pattern in recruitment variation:

The first decline and recovery of the stock engendered the famous "Thompson-Burkenroad" debate (Skud 1975). R. F. Thompson, first head of the IPHC, maintained that the first monitored decline had been caused by overfishing, and that the first recovery was due to the sound management of harvests. His "enemy" Burkenroad, one of the first oceanographers to think

Management objectives are a societal decision to allocate a renewable fisheries resource between present and future use.

Spawner-Recruit Fundamentals

Spawner-Recruit Function

Key Point #1 Maximum Sustainable Yield (MSY) is Common Standard

- Pacific Salmon Treaty
- Magnuson-Stevens Act
- US v.
 Washington

Key Point #2 Spawners Below MSY Does Not Imply Extinction Risk

Overfished (3 years)

Chinook
< 50% MSY (point A)

High Risk

 5% unfished abundance (point B)

Key Point #3 Objective Rarely to "fill the habitat to capacity"

- Productivity declines as spawner densities increase
- Results in no harvestable fish at very high densities

Key Point #4 <u>MSY Evolved – Broader Considerations & Improved Science</u>

Consideration	Management Evolution
 Economic - strict	 Harvest rate management
management for	can achieve similar longterm
spawner goal can create	yield (e.g., apply 35% harvest rate
boom-bust cycle	each year)

Key Point #4 MSY Evolved – Broader Considerations & Improved Science

Consideration	Management Evolution
 Additional population characteristics important to sustain populations over longterm 	 Include diversity and spatial structure as objectives

Key Point #4

MSY Evolved – Broader Considerations & Improved Science

Consideration Environmental variability and error in estimating spawners make management for MSY difficult and expensive

Management Evolution

Key Point #4 <u>MSY Evolved - Broader Considerations & Improved Science</u>

Consideration	Management Evolution
 Environmental variability and error in estimating spawners make management for MSY difficult and expensive 	 Use "smart" analytical methods Incorporate uncertainty in management Consider harvest rate management

Key Point #5 MSY Not Informative Where Habitat Substantially Degraded

Key Point #5 MSY Not Informative Where Habitat Substantially Degraded

Habitat Degraded

- Lower Capacity: Fewer fish supported
- Lower Productivity: Fewer adults per spawner

Key Point #5 MSY Not Informative Where Habitat Substantially Degraded

Habitat Greatly Degraded

 Demographic risk drives management

Key Point #6 Multiple Approaches - Technical Analysis Challenging

MSY Spawner or Harvest Rate Management Objectives

- Stock Recruit Analysis (Grays Harbor Chinook)
- Historical Average (Hoko Chinook)
- Habitat (Puget Sound Coho)

Habitat Degradation (ESA-listed)

- Demographic Risk Analysis (Skagit Chinook)
- Historical Average (Puget Sound Steelhead)

Key Point #7 Important to Routinely Update Objectives

Environmental Conditions Not Stationary

- Stock Recruit Analysis
 - ✓ Grays Harbor Chinook (2014)
 - ✓ Willapa Coho (2015)
- Demographic Risk Analysis
 - ✓ Lower Columbia Tule (2011)
 - ✓ Skagit, Stillaguamish, Snohomish Fall Chinook (2000)

Key Point #8 Substantial Work Underway

- Chinook
 - ✓ Pacific Salmon Treaty Indicator Stocks (2016-17)
 - ✓ Puget Sound (2016-17)
 - ✓ Willapa Bay (Willapa Policy, 2020)
- Sockeye
 - ✓ Cedar River (2016)
- Chum
 - ✓ Willapa Bay (Willapa Policy, 2016)
 - ✓ Grays Harbor (Grays Harbor Policy, 2016)
- Steelhead
 - ✓ Lower Columbia (2016)
 - ✓ Puget Sound recovery goals (2017)

Summary

Management Objectives - Key Points

- 1) MSY is common standard
- 2) Fewer than MSY spawners does not imply extinction risk
- 3) "Fill habitat to capacity" rarely objective
- 4) Objectives evolving diversity, spatial structure, economics

Summary

- **Management Objectives Key Points**
- 5) Demographic risk critical when habitat greatly degraded
- 6)Technical analyses challenging
- 7)Environment not stationary routine updates necessary
- 8)Substantial work underway