Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers

DOE/BP-00009774-1

June 2003

This Document should be cited as follows:

Faler, Michael, Glen Mendel, Carl Fulton, ''Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers'', Project No. 2002-00600, 20 electronic pages, (BPA Report DOE/BP-00009774-1)

> Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA.

Evaluate Bull Trout Movements in the Tucannon And Lower Snake Rivers

Project Number 2002-006-00 Contract Number: 00009774

Annual Report – FY 02 (April 1, through November 30, 2002)

Field Investigators:

Micheal P. Faler United States Fish and Wildlife Service Idaho Fishery Resource Office P.O. Box 18 Ahsahka, ID 83520 (208) 476-7242

Glen Mendel and Carl Fulton Washington Department of Fish and Wildlife Fish Management Division 529 W. Main Street Dayton, WA 99328 (509) 382-1005

April 22, 2003

Abstract

We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0°C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002.

During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River.

We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek "H" antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

Acknowledgements

This study was funded by the U.S. Department of Energy, Bonneville Power Administration (BPA), Project number 2002-006-00, Contract number 00009774. Roy Beaty served as the BPA Contracting Officer's Technical Representative. The authors would specifically like to thank Ray Weldert for his diligence in fish handling, radio tracking and surgical expertise; Micki Varney for her assistance in tracking and technical support; the Washington Department of Fish and Wildlife Snake River Laboratory for lending us telemetry receivers and other equipment; and Doug Maxey, Mike Sutterfield, and Lyle Leslie of the Washington Department of Fish and Wildlife Tucannon Fish Hatchery for operation of the Tucannon trap and assistance with this study.

Table of Contents

Abstract	2
Acknowledgements	
List of Tables	
List of Figures	5
Introduction	6
Study Area	7
-	
Methods and Materials	9
Depth Transmission Tests	10
Results and Discussion	10
Douth Transmission Tosts	12
Depth Transmission Tests	13
Summary and Conclusions	14
Summary and Conclusions	
Bull Trout Movements and Distribution	14
New Activities Planned	15
Depth Transmission Tests	15
Summary of Expenditures	15
Deferrences	15
References	15
Appendix A. Bull Trout Trapping and Tagging Log, WDFW Tucannon	
Hatchery, 2002	
,,	

List of Tables

Table 1. Bull trout trapping data at the Tucannon Hatchery weir,	
1998-2002	10
Table 2. Known and suspected mortalities, and radio tag recoveries in the	
Tucannon Subbasin, June – August, 2002	11
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

List of Figures

Figure 1. Map of Southeast Washington showing the location of the
Tucannon River in relation to the four Lower Snake River dams
Figure 2. Fixed telemetry data logger stations (indicated by arrows) in the
Tucannon Subbasin, fall, 2002
Figure 3. Distribution of radio-tagged bull trout in the Tucannon
Subbasin in July, 2002. Each star may represent more than one fish
location. The oval represents a high concentration of fish locations
Figure 4. Distribution of radio-tagged bull trout in the Tucannon
Subbasin in August and September, 2002. Each star may represent
more than one fish location. The oval represents a high concentration
of fish locations12
Figure 5. Distribution of radio-tagged bull trout in the Tucannon
Subbasin in October and November, 2002. Each star may represent
more than one fish location

Introduction

The recent listing of the Columbia River Distinct Population Segment of bull trout identified one of the major threats to the species as fragmentation resulting from dams on overwintering habitats of migratory subpopulations (Federal Register, 1998). It is possible that a migratory subgroup in the Tucannon River utilizes the mainstem Snake River for adult rearing on a seasonal basis (Underwood et al., 1995). The occurrence of bull trout in the hydropower system has been verified by a few incidental observations during sampling in Lower Monumental Pool (Buchanan et al. 1997 citing Ward), and in the adult passage facilities at Lower Monumental and Little Goose dams in the early 1990s (Kleist, in litt. 1993). Until recently, no attempts at adult fish enumerations were made at the Lower Monumental or Little Goose fish counting windows from Nov. 1 through March 31; bull trout are now counted year-round, with the exception of one month, usually January, when the adult ladder is de-watered for maintenance. Unfortunately, the past scheduled abandonment of fish counting activities coincides with adult bull trout movements into larger mainstem systems for adult rearing and foraging as indicated in other Columbia Basin subpopulations (Elle 1995; Faler and Bair 1992; Kelly Ringell and DeLaVergne 2000 and 2001; Schriever and Schiff, 2003; Theisfeld et al. 1996; Underwood et al. 1995). As a result, it is unknown if the existing fishways at the lower Snake River dams are suitable for bull trout passage, or if migratory fish originating from the Tucannon River attempt to pass these facilities on a regular basis.

The potential for bull trout movements throughout the migratory corridor is high, but from the standpoint of future delisting and requirements set forth in the FCRPS Biological Opinion (USFWS, 2000) the determination of temporal and spatial distribution in the mainstem is crucial in developing recovery actions, estimating "take", and successful consultation on system improvement actions. This project was designed to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the Lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage.

Rieman and McIntyre (1993) describe unimpeded migratory corridors as important habitats to the persistence and interaction of local populations. They also indicate that disruption and/or modification of migratory corridors can increase stress, reduce growth and survival, and potentially result in the loss of migratory life-history types in a subpopulation. With these factors in mind, the primary question to be answered is: Does the existing hydropower system on the Lower Snake River limit the capabilities of Tucannon River bull trout to complete their migratory behavior, or are the current hydropower operations compatible with recovery and conservation of the species? The secondary goal of the project is to examine the movements and spatial/temporal distribution of migratory bull trout within the Tucannon River and to determine the proportion of migratory fish that leave the Tucannon River to overwinter. The bull trout stock status in the Tucannon River is considered healthy by the Washington Department of Fish and Wildlife (WDFW 1998), but little is known about their migrations in the Tucannon and Snake river subbasins. Underwood et al. (1995) conducted a radio telemetry study of adult bull trout within the Tucannon River. However, the radio telemetry was only part of a larger study so the tracking data were limited (with only a few fish tagged and only one winter of tracking) and it therefore did not provide a complete assessment of the migrations and movements of bull trout.

The objectives of this study are to:

1. Determine the spatial distribution, migration timing, and movements of adult migratory bull trout in the Tucannon and Snake rivers.

2. Determine bull trout use and passage efficiency in fishways at Lower Snake River dams.

3. Estimate frequency of bull trout fall-back at Lower Snake River dams.

4. Determine if bull trout losses result from movements out of Lower Monumental Pool.

The primary assumption associated with the study is that the movements of radio-tagged bull trout are not different from the movements of other bull trout in the subgroup. This assumption is critical to the project as a whole. The use of long-life transmitters and tagging well before spawning or major migrations should reduce the effects of tagging on fish behavior. Martin et al. (1995) found that surgically implanted dummy transmitters did not affect fish survival, growth, or gonad development in rainbow trout held in captivity. Radio transmitters have been used in other bull trout studies in recent years with good success (Elle 1995, Faler and Bair 1992, Kelly Ringel and DeLaVergne 2000/2001, Schriever and Schiff 2003, Underwood et al. 1995). Objectives 1, 2 and 4 have critical assumptions, in part, associated with each of those objectives. In order to determine distribution in the Snake River (Objective 1) and passage efficiency (Objective 2), we must assume that a portion of our group of radio-tagged bull trout will enter the Snake River and at least attempt to pass through a fish ladder in the Lower Snake River. Likewise, in order to estimate the extent of losses in Objective 4, there must be some movement (upstream or downstream) of radio-tagged bull trout out of Lower Monumental Pool, and we also assume that radio transmission will be adequate to track bull trout movements throughout the reservoirs.

Study Area

The Tucannon Subbasin encompasses the entire Tucannon watershed and all tributaries (approximately 502 square miles). The stream system originates in the Wenaha-Tucannon Wilderness Area, in the northeast portion of the Blue Mountains at an elevation of 6,234 feet (at Diamond Peak) and terminates at the Snake River (RM 62) at an elevation of 540 feet (Figure 1). Dryland agriculture and livestock grazing are the dominant land uses in mid-elevation upland areas, while forestry, recreation and grazing are the primary land uses at higher elevations. The subbasin is characterized by deep vshaped valleys in headwater areas gradually widening into comparatively broad valley bottoms on the lower mainstem of the Tucannon River and Pataha Creek. The topography is the result of folding and faulting of extensive deposits of Columbia River Basalts. Highly erodible loess soils on the plateau tops support extensive acreages of dryland farming. There is generally a large difference in elevation between the valley bottom of the drainage network and the surrounding plateaus. Intermittent and/or ephemeral streams are present throughout the watershed. Under typical conditions these streams do not convey much water, but during thunderstorms or rain-on-snow events they are capable of carrying immense debris torrents into the Tucannon River. The

sediment-moving capacity of these small streams is easily seen in the extensive alluvial fans deposited at their mouths. Habitat conditions in the Tucannon Subbasin range from generally fair to good in the Tucannon Drainage to generally poor in the Pataha Drainage.

Salmonid bearing streams in the subbasin include Bear Creek, Sheep Creek, Cold Creek, Panjab Creek, Turkey Creek, Meadow Creek, Little Tucannon River, Hixon Creek, Cummings Creek, Tumalum Creek, Pataha Creek, and the mainstem Tucannon River. Summer steelhead/rainbow, spring chinook, fall chinook, resident rainbow trout, and bull trout are currently present. Summer steelhead/rainbow are presumed to be present in Kellogg and Smith Hollow creeks. Coho were historically present, and in recent years, coho have again begun using the lower reaches of the mainstem Tucannon river. It is likely that the coho recently found in the Tucannon watershed are stray individuals from nearby tribal hatchery reintroduction efforts.

The Tucannon River enters the Snake River at RM 62.5 (RK 100.6) in Lake Herbert G. West, delineated by Lower Monumental and Little Goose dams on the downstream and upstream ends, respectively. Lyons Ferry Hatchery occurs a few miles downstream of the Tucannon mouth, at the confluence of the Snake and Palouse rivers. This portion of the Snake River is primarily a migration corridor for anadromous salmonids. Spring chinook and summer steelhead use the Snake River to migrate to and from the ocean and/or between tributary streams, while fall chinook use the Snake for spawning, rearing and migration. Sockeye migrate through this corridor to and from spawning grounds in Idaho's Salmon River Basin.

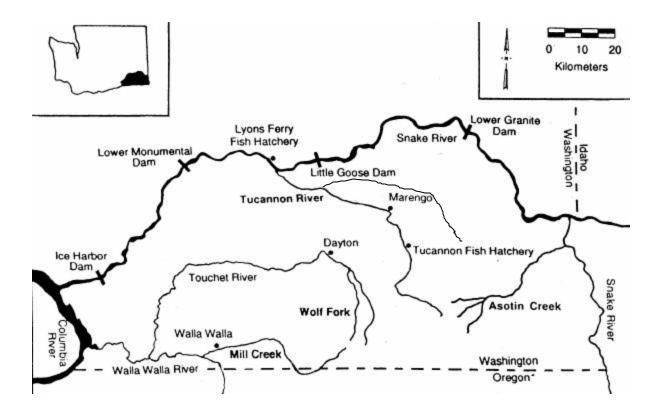


Figure 1. Map of Southeast Washington showing the location of the Tucannon River in relation to the four Lower Snake River dams.

Methods and Materials:

The approach of the study is to use radio-telemetry to monitor the movements of adult bull trout within the Tucannon river basin, and as they emigrate to the Snake River to rear throughout the winter. We attempted to capture bull trout in the lowermost 5 river miles of the Tucannon River during April with seines and angling gear without success. We were successful at capturing and tagging adult bull trout at the Tucannon Hatchery weir in May and June. Fish of appropriate size (\geq 50 times transmitter weight in air) were surgically implanted with 399-761 day life expectancy radio-tags. Surgical procedures generally followed those used by Faler et al. (1988), Faler and Bair (1992), Kelly Ringel and DeLaVergne (2000/2001), and Schriever and Schiff (2003).

Radio tags for this study were obtained from Lotek Engineering. We utilized 3 different models/sizes of 3V micro coded fish transmitters: 1) model MCFT-3BM weighed 7.7g in air, had a 400 day life expectancy with a 12 sec burst rate, and was suitable for fish as small as 385 g, 2) model MCFT-3EM weighed 8.9g in air, had a 399 day life expectancy with a 5 sec burst rate, and was suitable for fish as small as 445 g, and 3) model MCFT-3A weighed 16.0g in air, had a 761 day life expectancy with a 5 sec burst rate, and was suitable for fish as small as 800 g. All tags operated on 149.380 mHz (Lotek Channel 4) and were individually micro-coded for easy separation of individual fish.

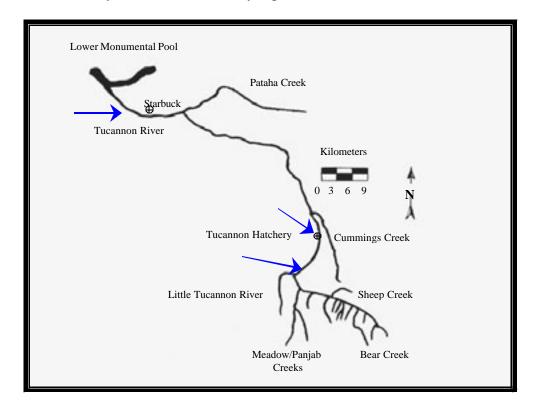


Figure 2. Fixed telemetry data logger stations (indicated by arrows) in the Tucannon Subbasin, fall, 2002.

Radio-tagged fish locations were monitored at least weekly in the Tucannon River from shore or aircraft. Individual fish locations were recorded by GPS coordinates during flights, and proximity to landmarks and/or road miles while tracking on shore. In addition, three fixed telemetry sites were established and operated continuously in the Tucannon Subbasin (Figure 2). The lowermost site, at river mile 1.6, was established to identify the timing of movements out of the Tucannon Subbasin and into the mainstem Snake River. Two other fixed sites (the Tucannon Hatchery weir, and Camp Wooten) were operated to record timing of fish movement into and out of the upper Tucannon River.

Depth Transmission Tests

During the months of September and November, we submerged radio-tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Radio-tags were secured with rubber "O" rings and electrical tape on 5/8" braided nylon rope 5-6 feet above 5 lb pyramid lead anchors. Each transmitter was affixed to the rope so it would be positioned with the transmitter's long axis horizontal under rope tension. Each rope was also affixed with a surface buoy marker for easy location and retrieval. We used Lotek model MCFT-3A transmitters, an SRX 400 receiver, and both a 4-element Yagi and "H" antenna. Tests were conducted from a boat and a helicopter.

Results and Discussion

Prior to the 2002 migration, picket width at the Tucannon Hatchery weir was modified to capture more bull trout. Two hundred and eight bull trout were captured at the Tucannon Hatchery weir in 2002 (see Table 1 below, and Appendix Table A). Forty one of these were measured, weighed, marked with a PIT tag, radio-tagged, and released above the weir. Sixty-three additional individuals were marked only with a PIT tag and released above the weir. The remaining 104 captured bull trout were simply enumerated and released.

V	Number of Bull			Number of Bull Trout
Year	Trout Captured	Capture Dates	Average Length	with Length # 260 mm
1998	82	4/1 - 8/29	396 mm	1
1999	39	5/20 - 7/12	449 mm	0
2000	41	4/17 - 8/29	437 mm	0
2001	39	5/12 - 6/27	469 mm	0
2002*	208	5/17-7/31	404 mm	0

Table 1. Bull trout trapping data at the Tucannon Hatchery weir, 1998-2002.

*For detail, refer to Appendix A: Bull Trout Trapping and Tagging Log

Of the 41 radio tags implanted in bull trout, 5 were recovered (Table 2). One tag (code 70) was implanted in a bull trout on May 22, and that fish subsequently moved steadily

downstream; the tag was recovered approximately 6 river miles downriver. Although the host fish was not recovered, due to the immediate and rapid movement downstream, it is likely this fish died due to injuries or disease exacerbated by surgery. This tag was subsequently implanted in another bull trout on June 14. Two tags (codes 81 and 86) were recovered with a carcass and/or remains, proving conclusively that the host fish died. One tag (code 88) was recovered near signs of a predator; otter scat and tracks were in the area of the tag, and the antenna showed signs of having been bitten. It is likely that this fish died, although this is not substantiated. One tag (code 62) has not been recovered, but has been transmitting from seemingly the same location since August 6. Project personnel have performed multiple unsuccessful attempts to recover this tag. It is likely that a live bull trout no longer carries this tag. Finally, 1 tag (code 77) was recovered without any evidence as to final disposition of the host fish. This radio tag was recovered in nearly new condition. A possible explanation for the recovery of tag code 77 is that the host fish rejected the tag.

Code	Date of Recovery	Implant Date	Final location	Tag Condition	Comments
62	N/A	5/19/02	Vicinity of W. T. Wooten WA campground #5	N/A	Tag has not been recovered.
70	6/13/02	5/20/02	1.5 miles downstream of Marengo bridge	Good	Tag found without carcass Tag re-implanted in another fish on 6/15/02.
77	8/21/02	5/26/02	0.1 mi. upstream of USFS 180/47 intersection	Excellent	Tag recovered underwater on cobble bed. No trace of fish. Tag may have been rejected.
81	8/6/02	5/30/02	0.4 mi. upstream of Cummings bridge	Good	Tag recovered on streamside gravel bar. Scattered remains (bone, cartilage etc.) around tag.
86	7/24/02	5/28/02	~400m upstream of Beaver-Watson Lakes bridge	Excellent	Carcass recovered in fresh condition headburn, fungus. No sign of predator wounds.
88	7/24/02	6/13/02	0.6 miles upstream of Cummings bridge	Antenna appears to have been chewed on.	Tag recovered under brush pile, with otter scat nearby.

Table 2: Known and Suspected Mortalities, and Recovered Radio Tags, In the Tucannon Subbasin, June - August 2002.

During the month of July radio-tagged bull trout exhibited a general upstream movement but remained relatively close to the tagging and release point (Figure 3). Post-tagging recovery may have slowed or delayed migration during this period.

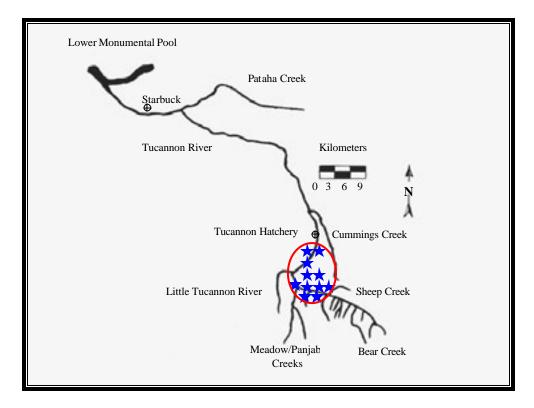


Figure 3. Distribution of radio-tagged bull trout in the Tucannon Subbasin in July, 2002. Each star may represent more than one fish location. The oval represents a high concentration of fish locations.

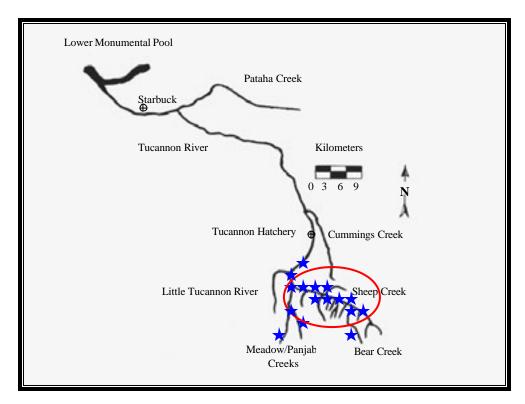


Figure 4. Distribution of radio-tagged bull trout in the Tucannon Subbasin in August and September, 2002. Each star may represent more than one fish location. The oval represents a high concentration of fish locations.

Later in the summer and into September, bull trout moved into known spawning areas in Bear, Panjab/Turkey and Meadow creeks, and the upper mainstem Tucannon River (Figure 4).

Post-spawning movements in October and November (Figure 5) were similar to those observed in the Tucannon River by Underwood et al. (1995), and typical of post-spawning movements observed in other migratory populations (Elle 1995; Faler and Bair 1992; Kelly Ringel and DeLaVergne 2000/2001; Schriever and Schiff 2003; Theisfeld et al. 1996). By the end of November, there were a total of 5 individuals residing within the lowest 17 miles of the Tucannon River. The furthest downstream detection was near the confluence with Pataha Creek, downstream of Highway 12.

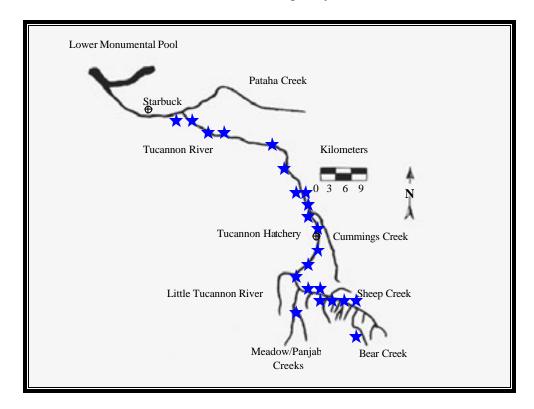


Figure 5. Distribution of radio-tagged bull trout in the Tucannon Subbasin in October and November, 2002. Each star may represent more than one fish location.

Depth Transmission Tests

Initial results showed that depth transmission of the MCFT-3A transmitters was poor. From the boat and air, we could audibly detect the transmitter placed at 25 ft., but the signal was not strong enough to display a code. The audible signal strength appeared to be stronger from the helicopter when using the "H" antenna vs. the Yagi, but this was most likely due to antenna mounting, placement, and positioning, rather than superior reception from the "H" antenna. Transmitters at all other depths projected no detectable signal at all, regardless of which antenna was used. During both tests, conductivities in Lower Monumental Pool ranged from $30-50 \mu mhos/cm$.

Summary and Conclusions

Bull Trout Movements and Distribution

Bull trout generally moved upstream rapidly after recovering from tagging. By late June or early July most radio tagged bull trout had moved upstream into the Wenaha-Tucannon Wilderness, where all fishing is prohibited and water temperatures remain cold. In September, bull trout were located in known spawning areas that included the Tucannon River upstream of Bear Creek, Bear Creek, the Tucannon River between Panjab and Bear creeks, Meadow Creek and Turkey Creek.

Some bull trout initiated downstream movement from the spawning areas in September, and by late October or early November bull trout movements ceased. Very cold weather in late October and early November coincided with the cessation of movements by bull trout. By this time bull trout were scattered from the upper parts of the Wilderness downstream to near the mouth of Pataha Creek. Three radio tags were located below Highway 12, 4 from Highway 12 to the Hatchery, 16 from the Hatchery to the mouth of Sheep Creek, and the remaining 12 tags were within the Wenaha-Tucannon Wilderness Area upstream of Sheep Creek. The locations of fish downstream of Sheep Creek were monitored by both ground and aircraft, whereas those locations upstream of Sheep Creek were only monitored by aircraft. A fall drought, that included low stream flows and an unusually cold period in the last few days of October and early November, may have limited fall bull trout movements in the Tucannon River in 2002.

A fixed-site receiver near the mouth of the Tucannon River operated continuously since September 26, 2002. No radio tagged fish were detected at this site, or downstream during mobile tracking. Therefore, no radio tagged fish entered the Snake River, nor was any work completed in association with objectives 2, 3, or 4 of this study. Three radio tagged fish (codes 65, 83, 55) migrated down to the mouth of Pataha Creek. Untagged bull trout were reported downstream to the mouth of the Tucannon River by steelhead anglers, and a few were trapped by WDFW in the lower river.

Possible evidence of tag rejection/explusion was observed. In 2001, a bull trout telemetry study in the Touchet River conducted by the WDFW documented that some bull trout extruded their radio tags and subsequently survived for at least several weeks (draft annual report from WDFW, Dayton). It is possible that some of the Tucannon River fish also expelled their tags. In mid August, five individual radio-tagged bull trout were visually examined by snorkelers near the confluence of Panjab Creek and the mainstem of the Tucannon River. Two of those five fish appeared to have irritated or infected flesh surrounding the surgical incision. It is possible that radio-tagged fish exhibiting irritation at the incision site may be in the process of expelling their tag.

New Activities Planned for Spring and Summer 2003

WDFW will continue to integrate all radio tracking information into a single tracking summary for each fish to improve interpretation and understanding of fish movements. The investigators will continue to try and improve fish handling and tagging procedures to reduce tag loss and bull trout mortality from handling and tagging in 2003.

Some radio tags implanted into bull trout have an expected battery life of just over 1 year. Therefore, it is possible that the batteries in those radio transmitters may expire before the fish begin upstream movements in the spring. We hope to snorkel some of the radio tagged fish during spring and early summer of 2003 to try and confirm that they are in live bull trout before upstream migration begins. Detection of upstream movements would also confirm that radio tags are in live bull trout.

Depth Transmission Tests

Based on our initial test results, we may temporarily lose contact with radio-tagged bull trout that migrate to the Snake River if they utilize water depths greater than 20-25 feet. It is important to note, however, that it is highly unlikely these fish could pass Lower Monumental or Little Goose dams without being detected at the fixed stations installed there. We intend to expand our tests with different transmitters, frequencies, and manufacturers to help determine if there may be equipment available that would better suit our needs for monitoring bull trout in the Snake River reservoirs.

Summary of Expenditures

- Acquisition of two (2) SRX-400 (W-32) radio receivers from Lotek Engineering (\$19,303).
- Aerial tracking (13.5 hours of helicopter time) to cover flights in September, October, and November (\$8,127)
- PIT tag detectors (4) (\$9,630).
- Helicopter Helmets (2) Gentex SPH-5 (\$1,098).
- Nomex Flight Gear (\$330)

References

- Buchanan, D., M. Hanson, and R.M. Hooten. 1997. 1996 Status of Oregon's Bull Trout. Oregon Department of Fish and Wildlife, Portland, Oregon.
- Corps of Engineers. 1997. 1997 Annual Fish Passage Report, Columbia and Snake Rivers for Salmon, Steelhead and Shad. North Pacific Division, U.S. Army Corps of Engineers, Portland and Walla Walla Districts.
- Elle, S. 1995. Federal Aid to Fish Restoration. Job Performance Report. Grant F-73-R17. Project 6, Bull Trout Investigations. Subproject 1, Rapid River bull trout movement and mortality studies, and Subproject 2, Bull Trout aging studies. IDFG 95-33. Idaho Fish and Game. Boise, Idaho.

- Faler, M.P., L.M. Miller, and K.I. Welke. 1988. Effects of Variation in Flow on Distributions of Northern Squawfish in the Columbia River below McNary Dam. North American Journal of Fisheries Management 8:30-35.
- Faler, M.P. and T.B. Bair. 1992. Migration and Distribution of Adfluvial Bull Trout in Swift Reservoir, North Fork Lewis River and Tributaries. Gifford Pinchot National Forest, Wind River Ranger District, Unpublished Report.
- Federal Register. 1998. Determination of Threatened Status for the Klamath River and Columbia River Distinct Population Segments of Bull Trout. Vol. 63, No. 111. FR Doc. 98-15319. June 10, 1998.
- Kelly Ringel, B. and J. DeLaVergne. 2000 Progress Report. Wenatchee River Basin Bull Trout Telemetry Study. U. S. Fish and Wildlife Service, Leavenworth, Washington.
- Kelly Ringel, B. and J. DeLaVergne. 2001 Progress Report. Wenatchee River Basin Bull Trout Telemetry Study. U. S. Fish and Wildlife Service, Leavenworth, Washington.
- Kleist, T. (Washington Department of Wildlife) 1993. Memorandum to Eric Anderson (WDW) sumarizing fish passage at Snake River dams.
- Martin, S.W., M.A. Shuck, K.D. Underwood and A.T. Scholz. 1992. Investigations of Bull Trout (*Salvelinus confluentus*), Steelhead Trout (*Oncorhynchus mykiss*), and Spring Chinook Salmon (*O. tshawytscha*) Interactions in Southeast Washington Streams. U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife. Project No. 90-53, Contract No. DE-BI79-91BP17758. 206 pp.
- Martin, S.W., J.A. Long, and T.N. Pearsons. 1995. Comparison of survival, gonad development, and growth between rainbow trout with and without surgically implanted dummy radio tags. NAJFM 15: 494-498.
- Mendel, G., C. Fulton, and R. Weldert. 2003. An Investigation Into the Migratory Behavior of Bull Trout (*Salvelinus confluentus*) in the Touchet River Basin. Washington Department of Fish and Wildlife (Unpublished draft report).
- Rieman, B.E. and J.D. McIntyre. 1993. Demographic and Habitat Requirements for Conservation of Bull Trout. USDA Forest Service, Intermountain Research Station. General Technical Report INT-302.
- Schriever, E. and D. Schiff. 2003. Bull Trout Life History Investigations in the North Fork Clearwater River Basin: Regional Fisheries Management Investigations; North Fork Clearwater River Bull Trout. U. S. Army Corps of Engineers, Walla Walla District, Contract No. DACW68-96-D0003, Delivery Order 0022.
- Theisfeld, S.L., A.M. Stuart, D.E. Ratliff, and B.D. Lampman. 1996. Migration Patterns of Adult Bull Trout in the Metolius River and Lake Billy Chinook, Oregon. Oregon Department of Fish and Wildlife Information Report 96-1. Portland, Oregon.

- Underwood, K.D., S.W. Martin, M.L. Shuck, and A.T. Scholz. 1995. Investigations of Bull Trout (*Salvelinus confluentus*), Steelhead Trout (*Oncorhynchus mykiss*), and Spring Chinook Salmon (*O. tshawytscha*) Interactions in Southeast Washington Streams--1992 Final Report. U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife. Project No. 90-53, Contract No. DE-BI79-91BP17758. 173 pp.
- USFWS. 2000. Biological Opinion, Effects to listed species from operations of the Federal Columbia River Power System. Consultation Conducted by: U.S. Fish and Wildlife Service. December 20, 2000.
- Washington Department of Fish and Wildlife (WDFW). 1998. Washington State Salmonid Stock Inventory Bull Trout and Dolly Varden. Olympia, WA.

Appendix A: Bull Trout Trapping and Tagging Log, W	WDFW Tucannon Hatchery, 2002
--	------------------------------

Entry # Data	Chan (Code Pit Tag Code	\\/t (a)	(cm) T ^C	C SCALE #		Notor Tomr	c Comments
Entry # Date 1 03/30/02		Solle Pil Tay Code	vvi. (g) i	40 40	C SCALE #	DINA #	valer rem	passed upstream
2 03/30/02				36				passed upstream
3 03/31/02				33				passed upstream
4 05/15/02								passed upstream
5 05/15/02							0_	passed upstream
6 05/17/02		72 3D9.1BF1697693			3 TU1-1	BT02-TU01	47 ⁰ F	released 100 m upstream of trap
7 05/17/02		74 3D9.1BF0EDB1EI	F 720	41 8.	3 TU1-2	BT02-TU02	47 ⁰ F	released 100 m upstream of trap
8 05/18/02 9 05/19/02		61 3D9.1BF168B791	380	33	TO2-3	BT02-TU03		passed upstream released 100 m upstream of trap
10 05/19/02		58 3D9.1BF168B72A		35	TO2-3 TO2-4	BT02-TU03 BT02-TU04		released 100 m upstream of trap
11 05/19/02		76 3D9.1BF16948F4		36	TO2-5	BT02-TU05		released 100 m upstream of trap
12 05/19/02	4	62 3D9.1BF1694C4E	700	41	TO2-6	BT02-TU06		discoloration on nose tip, released 100 m upstream of trap
13 05/20/02		68 3D9.1BF1697197		45	N/A	BT02-TU21		released 100 m upstream of trap
14 05/20/02		65 3D9.1BF1695190		46	TU2-1	BT02-TU22		worm in gill, released 100 m upstream of trap
15 05/22/02		70 3D9.1BF168D096		41.5 37	TU2-2	BT02-TU20		fish died, tag recovered 6/13/02; released 100 m upstream of gate
16 05/22/02 17 05/25/02		71 3D9.1BF1678444	560	37	TU2-3	BT02-TU19		released 100 m upstream of the gate at river bend passed upstream
18 05/26/02		64 3D9.1BF169505F	660	3557	8 TU2-4	BT02-TU17	46 ⁰ F	released 100 m upstream of the gate at river bend
19 05/26/02		75 3D9.1BF1694992			0 TU2-5	BT02-TU18	50 [°] F	released 100 m upstream of the gate at river bend
20 05/26/02		3D9.1BF168D096			0 TU2-6	BT02-TU16		released 100 m upstream of the gate at river bend
21 05/26/02	4	77 3D9.1BF16776BE	920	41.5 10.	0 TU2-7	BT02-TU15		released 100 m upstream of the gate at river bend
22 05/26/02		3D9.1BF1694136	660	52 10.	0 TU2-8	BT02-TU14		aborted surgery; released 100 m upstream of gate
23 05/26/02		3D9.1BF168D444			0 TU2-9	BT02-TU13		released 100 m upstream of the gate at river bend
24 05/26/02		3D9.1BF1697900	720	41 10.	0 TU2-10	BT02-TU12		released 100 m upstream of the gate at river bend
25 05/27/02 26 05/27/02								passed upstream
27 05/27/02								passed upstream passed upstream
28 05/28/02		86 3D9.1BF1695EDC	2080	56 7.	8 TU2-11	BT02-TU07	46 [°] C	released 100 m upstream of the gate at river bend
29 05/28/02		79 not PIT - tagged	970		8 TU2-12	BT02-TU08		released 100 m upstream of the gate at river bend
30 05/28/02	4	67 3D9.1BF168CBD	F 670	39 7.	8 TU2-13	BT02-TU09		released 100 m upstream of the gate at river bend
31 05/28/02	4	73 3D9.1BF139501D	640	40.5 7.	8 TU2-14	BT02-TU10	0	released 100 m upstream of the gate at river bend
32 05/29/02		84 3D9.1BF168CF0E) 1900		0 TU3-1	BT02-TU23	10 ⁰ C	released 100 m upstream of the gate at river bend
33 05/29/02		60 3D9.1BF16950AE			0 TU3-2	BT02-TU24	10 ⁰ C	released 100 m upstream of the gate at river bend
34 05/29/02		83 3D9.1BF1695C76			0 TU3-3	BT02-TU25	10 [°] C	released 100 m upstream of trap
35 05/29/02		52 3D9.1BF1677BFB			0 TU3-4	BT02-TU30	10 [°] C	released 100 m upstream of trap
36 05/30/02		59 3D9.1BF1696181	400		0 TU3-5	BT02-TU27	8°C	released 100 m upstream of trap
37 05/30/02		57 3D9.1BF1698811	780		0 TU3-6	BT02-TU28	8 ⁰ C 8 ⁰ C	released 100 m upstream of trap
38 05/30/02		54 3D9.1BF149543A			0 TU3-7	BT02-TU29	8 C 8 ⁰ C	released 100 m upstream of trap
39 05/30/02		55 3D9.1BF1695D79			0 TU3-8	BT02-TU26	9°C	released 100 m upstream of trap
40 05/30/02		3D9.1BF1694699		34.2 9.	0 INONE 0 TU3-9	BT02-TU31	9°C 9°C	released 100 m upstream of trap; too small for radio tag
41 05/30/02 42 05/31/02		81 3D9.1BF1677BE2 56 3D9.1BF1690D58			0 TU3-9	BT02-TU32 BT02-TU33	10 [°] C	released 100 m upstream of trap released 100 m upstream of trap
43 05/31/02		66 3D9.1BF16139440			0 None	BT02-TU33 BT02-TU34	10°C	released 100 m upstream of trap
44 06/01/02		85 3D9.1BF169422A			5 TU3-11	BT02-TU35	7.5	released 100 m upstream of trap
45 06/01/02		3D9.1BF169647F			5 TU3-12	BT02-TU36	7.50	released 100 m upstream of trap, bleeding from gill not tagged
46 06/03/02		3D9.1BF169090B			1 TU3-13	BT02-TU37	52 ⁰ F	released 100 m upstream of trap
47 06/03/02		63 3D9.1BF1678533			1 TU3-14	BT02-TU38	52 ⁰ F	released 100 m upstream of trap
48 06/04/02		69 3D9.1BF168B983			0 TU3-15	BT02-TU39	10 [°] C	released 100 m upstream of trap
49 06/04/02		53 3D9.1BF168ABB			0 TU3-16	BT02-TU40	10 [°] C	released 100 m upstream of trap
50 06/05/02		3D9.1BF1694E23	1	39				passed upstream
51 06/09/02		3D9.1BF11B832A		42				passed upstream
52 06/10/02		3D9.1BF1697B1E		40				passed upstream
53 06/11/02 54 06/11/02		3D9.1BF16978D6		37 35				passed upstream passed upstream
55 06/12/02		3D9.1BF168C7CI 3D9.1BF1394DB8		33				passed upstream
56 06/12/02		82 3D9.1BF1678425			7 TU3-17	BT02-TU41	53 ⁰ F	released 100 m upstream of trap
57 06/13/02		78 3D9.1BF1678C18			2 TU3-18	BT02-TU42	54 [°] F	released 100 m upstream of trap
58 06/13/02		91 3D9.1BF0EDB77/			3 TU3-19	BT02-TU43	56 ⁰ F	released 100 m upstream of trap
59 06/13/02		88 3D9.1BF169680C			3 TU3-20	BT02-TU44	56 ⁰ F	released 100 m upstream of trap
60 06/13/02		80 3D9.1BF1694009			9 TU4-1	BT02-TU45	57 ⁰ F	released 100 m upstream of trap
61 06/13/02		3D9.1BF168B985		30				passed upstream
62 06/13/02		3D9.1BF168ADF	0	39				passed upstream
63 06/13/02		3D9.1BF1696DA3		36				passed upstream
64 06/13/02		3D9.1BF169A253		37				passed upstream
65 06/13/02 66 06/13/02		3D9.1BF16977BD 3D9.1BF169699C		32 32				passed upstream passed upstream
67 06/14/02		70 3D9.1BF1699F97	670		2 TU4-2	BT02-TU46	54 ⁰ F	released 100 m upstream of trap
68 06/14/02		3D9.1BF169A05A			2 TU4-2 2 TU4-3	BT02-TU47	54 [°] F	released 100 m upstream of trap
00 00/14/02		0201.01100/100/		00 12			011	

69	06/14/02	4	89 3D9.1BF16769E7	1500	52 12.2 TU4-4	BT02-TU48	54 ⁰ F	released 100 m upstream of trap
	06/14/02		3D9.1BF168AB5F	720	38 12.2 TU4-5	BT02-TU49	54 ⁰ F	released 100 m upstream of trap
	06/14/02	4	87 3D9.1BF168B8D3	1020	45 12.2 TU4-6	BT02-TU50	54 ⁰ F	released 100 m upstream of trap; scrape on upper mandible below na
	06/14/02	4	90 3D9.1BF1677542	1220	50 12.2 TU4-7	BT02-TU51	54 ⁰ F	released 100 m upstream of trap
	06/14/02	-	3D9.1BF16770DB	1220	35 12.2 TU4-8	BT02-TU52	54 ⁰ F	released 100 m upstream of trap
	06/14/02		3D9.1BF1695020		36 12.2 TU4-9	BT02-TU53	54 ⁰ F	
							54 F 54 ⁰ F	released 100 m upstream of trap; cut on caudal peduncle
	06/14/02 06/15/02		3D9.1BF1695028 3D9.1BF1691678		34.5 12.2 TU4-10 46	BT02-TU54	54 F	released 100 m upstream of trap
	06/15/02		3D9.1BF1698829		40 55			passed upstream
	06/15/02		3D9.1BF169711E		37			passed upstream passed upstream
	06/16/02		3D9.1BF1695CD1		34			passed upstream
	06/16/02		3D9.1BF1695742		37			passed upstream
	06/16/02		3D9.1BF1677D74		38			passed upstream
82	06/16/02		3D9.1BF168B92(?)		42			passed upstream
83	06/16/02		3D9.1BF1696A3A		37			passed upstream
84	06/18/02		3D9.1BF1694D3A		38			passed upstream
85	06/18/02		3D9.1BF1678430		56			passed upstream
86	06/18/02		3D9.1BF16954E3		34			passed upstream
	06/18/02		3D9.1BF168B3F9		36			passed upstream
	06/18/02		3D9.1BF169951B		37			passed upstream
	06/18/02		3D9.1BF1695FEC		43			passed upstream
	06/18/02		3D9.1BF1678437		37			passed upstream
	06/18/02		3D9.1BF1394FB3		49			passed upstream
	06/18/02 06/18/02		3D9.1BF168B6A7 3D9.1BF1697A96		40 37			passed upstream
	06/18/02		3D9.1BF1694E61		35			passed upstream
	06/21/02		3D9.1BF1696C73		35.5			passed upstream passed upstream
	06/21/02		3D9.1BF16788B4		45.7			passed upstream
	06/21/02		3D9.1BF1696A17		35.5			passed upstream
	06/21/02		3D9.1BF169AC57		51			passed upstream
	06/21/02		3D9.1BF16977D9		45.3			passed upstream
100	06/21/02		3D9.1BF1696A1F	:	39.5			passed upstream
101	06/21/02		3D9.1BF168C5D5		38			passed upstream
102	06/21/02		71 3D9.1BF1678444		37			same fish as in entry #16; passed upstream
103	06/24/02		3D9.1BF16947E6		44			passed upstream
	06/24/02		3D9.1BF1696046		46			passed upstream
	06/24/02		3D9.1BF1692C46		54			passed upstream
	06/24/02		3D9.1BF1695D1D		38			passed upstream
	06/24/02		3D9.1BF168999E		32			passed upstream
	06/24/02		3D9.1BF169654B		36			passed upstream
	06/24/02 06/24/02		3D9.1BF168B3DF		44			passed upstream
	06/24/02		3D9.1BF168C71C 3D9.1BF168B70D		44 37			passed upstream passed upstream
	06/24/02		3D9.1BF1395016		42			passed upstream
	06/24/02		3D9.1BF1676C49		34			passed upstream
	06/24/02		3D9.1BF1676EE5		30			passed upstream
115	06/24/02		3D9.1BF1678224		34			passed upstream
116	06/25/02							passed upstream
117	06/25/02							passed upstream
118	06/25/02							passed upstream
	06/25/02							passed upstream
	06/25/02							passed upstream
	06/25/02							passed upstream
	06/25/02							passed upstream
	06/25/02							passed upstream
	06/25/02 06/25/02							passed upstream
	06/25/02							passed upstream passed upstream
	06/25/02							passed upstream
	06/25/02							passed upstream
	06/26/02		not PIT - tagged		15.6	stre	am temp 64	passed upstream
	06/26/02		not i layyou		10.0	0404		passed upstream
	06/26/02							passed upstream
	06/26/02							passed upstream
	06/26/02							passed upstream
134	06/26/02							passed upstream
	06/26/02							passed upstream
	06/26/02							passed upstream
	06/26/02							passed upstream
	06/26/02							passed upstream
139	06/26/02							passed upstream

140	06/26/02
141	06/26/02
142	06/26/02
143	06/26/02
144	06/26/02
145	06/27/02
146	06/27/02
147	06/27/02
148	06/27/02
140	06/27/02
149	06/27/02
150	06/27/02
151	06/27/02
152	06/27/02
153	06/27/02
154	06/27/02
155	06/27/02
156	06/27/02
157	06/27/02
158	06/28/02
159 160 161	06/28/02 06/28/02
162 163	06/28/02 06/29/02 06/29/02
164 165	06/29/02 06/29/02 06/29/02
166	06/29/02
167	06/29/02
168	07/01/02
169	07/01/02
170	07/01/02
171	07/01/02
172	07/01/02
173	07/01/02
174	07/01/02
175	07/01/02
176	07/05/02
177	07/05/02
178	07/08/02
179	07/08/02
180	07/08/02
181	07/08/02
182	07/08/02
183	07/09/02
184	07/09/02
185	07/09/02
186 187	07/09/02 07/11/02 07/11/02
188	07/11/02
189	07/11/02
190	07/11/02
191	07/11/02
192	07/11/02
193	07/11/02
194	07/12/02
195	07/15/02
196	07/15/02
197 198	07/15/02 07/15/02 07/15/02
199	07/15/02
200	07/15/02
201	07/15/02
202	07/29/02
203 204 205	07/29/02 07/29/02
205	07/29/02
206	07/29/02
207	07/31/02
207	07/31/02
208	07/31/02
209	07/31/02

passed upstream passed upstream