Marine Area 9
 Mark-Selective Recreational Chinook Fishery, November 1-30, 2008 and
 January 16 - April 15, 2009
 Post-season Report
 REVISED DRAFT

June 15, 2010

Prepared by:
Mark Baltzell, Steve Caromile, Karen Kloempken, and Laurie Peterson

Washington Department of Fish and Wildlife
Fish Program 600 Capitol Way North
Olympia, Washington 98501

TABLE OF CONTENTS

TABLE OF CONTENTS 1
LIST OF TABLES 2
LIST OF FIGURES 3
EXECUTIVE SUMMARY 4
INTRODUCTION 6
METHODS. 7
Marine Catch Area Description. 7
Monitoring Program Overview 7
Catch and Effort: Sampling and Estimation 9
Dockside Sampling 9
Aerial Surveys 10
Voluntary Trip Reports -Charter and Private Boats 11
Test Fishery Methods 12
Estimating Fishery Impacts 12
Total Encounters and Mortalities 12
CWT Impacts 13
RESULTS \& DISCUSSION 14
Summary of Sampling Efforts 14
Fishery Characteristics 16
Estimates of Fishing Effort and Catch 16
Characteristics of Harvested Chinook 16
Test Fishing Results 20
Fishing Time and Gear Type 20
Chinook Encounters and Mark Rates 20
Chinook Size and Age 24
Other Fish Species Encountered 24
Overall Fishery Impacts 25
Total Encounters and Mortalities 25
FRAM versus Creel Comparison 25
Estimated CWT-DIT Impacts 29
ACKNOWLEDGEMENTS 30
REFERENCES 31
APPENDICES 33
Appendix A. Total estimators for the aerial-access sample design. 34
Appendix B. Mark-selective fishery impact estimation details 38
Appendix C. Monthly sample rates (Total retained Chinook sampled ${ }^{1 /}$ / Estimated retained Chinook) in the winter 2008-09 Area 9 mark-selective Chinook fishery, November 1-30, 2008 and January 16- April 15, 2009 45

Appendix D. Summary of aerial overflight and dockside data used to estimate the fraction of Area 9 effort captured in the four-site sample frame during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery. See Appendix A for computational details and notation.
 46

Appendix E. Age composition of retained (dockside samples) and encountered (test fishery samples) Chinook salmon, during the winter 2008-09 mark-selective Chinook fishery in Area 9 (November 130, 2008 and January 16-April 15, 2009).
Appendix F. Coded-wire tag recoveries from Chinook salmon sampled during dockside angler interviews in the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 markselective Chinook fishery.
Appendix G. Fishery-total estimates of retained and released salmon (Chinook and other species) catch for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 markselective Chinook fishery. Displayed Chinook harvest values are equivalent to those displayed in Table 3. Whereas the Chinook release estimates displayed in Table 3 are based on the Conrad and McHugh (2008) method, values displayed here are based solely on angler-reported data. Values may not add exactly due to rounding error. $\mathrm{AD}=$ marked (i.e., adipose-clipped), $\mathrm{UM}=$ unmarked, $\mathrm{UNK}=$ unknown mark status. .49

Appendix H. Season-total estimates of Chinook encounters by size/mark status, and total estimates of angler effort, summarized for all seasons to date of the Area 9 winter mark-selective Chinook fishery. 50

LIST OF TABLES

Table 1. Sampling/estimation details on target parameters associated with the overall winter 2008-09 Area 9 mark-selective fishery monitoring program (Figure 1).
Table 2. Dockside creel sampling dates for the 2008-09 Area 9 winter mark-selective fishery (November 1-30, 2008 and January 16-April 15, 2009). Shaded cells are days when dockside creel sampling was conducted at all four sample-frame sites; "A" denotes days when aerial surveys occurred; "TF" represents test-fishing days.14

Table 3. Estimates of total fishing effort and total salmon catch (harvest and reported releases) during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective fishery. Values may not add exactly due to rounding error. $\mathrm{AD}=$ marked (i.e., adipose-clipped), $\mathrm{UM}=$ unmarked.
Table 6. Composition of test fishery Chinook encounters and associated mark-rate and size/mark-status proportion estimates for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery. Variances associated with size/mark-status proportions and mark rates are provided in parentheses.
Table 7. Fishing methods employed by private recreational anglers (from dockside interviews, based on number of boat trips sampled, $\mathrm{n}=620$) and test fishers (based on hours fished, $\mathrm{n}=288$) during the Area 9 2008-09 winter (November 1-30, 2008 and January 16-April 15, 2009) mark-selective Chinook fishery.
Table 8. Total Chinook encountered (retained and released) by private-boat anglers reporting their catch on voluntary trip reports (VTRs) compared to test fishery results, with estimates of legal, sublegal, and overall mark rates, during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.

Table 9. Test fishery catches of species other than Chinook salmon during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.
Table 10. Summary of season-wide fishery impact estimates for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery. Values may not add up perfectly due to rounding error.
Table 11. Comparison of modeled (i.e., using FRAM, model run 2108) and estimated total Chinook encounters for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.
Table 12. Comparison of modeled (i.e., using FRAM, model run 2108) and estimated total Chinook mortalities for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery
Table 13. Summary of double-index tagged (DIT) Chinook kept by anglers, and estimated total mortality of unmarked DIT Chinook due to hook-and-release impacts resulting from the Area 9 mark-selective Chinook fishery from November 1-30, 2008 and January 16-April 15, 2009. AD $=\operatorname{marked}$ (i.e., adipose-clipped), $\mathrm{UM}=$ unmarked.29

LIST OF FIGURES

Figure 1. Map of Marine Catch Area 9 in Puget Sound. Open white circles correspond to the approximate location of the four public ramps or marinas where angler interviews and catch sampling occurred: 1) Port Townsend Boat Haven Ramp; 2) Kingston Public Ramp; 3) Edmonds Marina Dry Stack; and 4) Everett Ramp (Norton/10th St).
Figure 2. Conceptual diagram of the monitoring plan implemented in Area 9 during its winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) mark-selective Chinook season. Circles represent discrete sampling activities, dashed boxes represent parameters that are estimated using data from a given activity, and solid boxes depict key quantities estimated from the comprehensive plan. 'Encounters' includes both harvested and released Chinook salmon.

Figure 3. Length-frequency distribution for marked Chinook harvested during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery..... 19

Figure 4. Length-frequency distributions of marked (left panel) and unmarked (right panel) Chinook encountered by test fishers during the winter 2008-09 Area 9 (November 1-30, 2008 and January 16April 15,2009) mark-selective Chinook fishery. Note that the vertical dashed line in the upper panel corresponds to the legal size limit (22 in or 56 cm).
Figure 5. Comparison of modeled (i.e., using FRAM, model run 2108) and estimated total Chinook encounters (upper panel) and mortalities (lower panel) for the 2008-09 Area 9 winter mark-selective Chinook fishery. Error bars represent approximate 95% confidence intervals for field estimates... 28

EXECUTIVE SUMMARY

The Washington Department of Fish and Wildlife (WDFW) implemented a mark-selective Chinook fishery (MSF) in Marine Area 9 for the second season during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009). Consistent with the 2004 Puget Sound Chinook Harvest Management Plan (Puget Sound Indian Tribes and WDFW 2004) and the intent of previous Puget Sound/Strait of Juan de Fuca mark-selective Chinook fisheries, the primary goal for this pilot fishery was to provide meaningful opportunity to the recreational angling public while minimally impacting ESA-listed Puget Sound Chinook salmon. WDFW's Puget Sound Sampling Unit (PSSU) implemented an intensive monitoring program in Area 9 throughout the fishery in order to collect the data needed to estimate key parameters characterizing the fishery and its impacts on unmarked salmon. Sampling activities included dockside creel sampling, test fishing, and aerial effort surveys. Among other parameters, efforts emphasized data collection needs for the estimation of: i) the mark rate of the targeted Chinook population, $i i$) the total number of Chinook salmon harvested (by size [legal or sublegal] and mark-status [marked or unmarked] group), iii) the total number of Chinook salmon released (by size and mark-status group), $i v$) the coded-wire tag- (CWT) and/or DNA-based stock composition of marked and unmarked Chinook mortalities ${ }^{1}$, and v) the total mortality of marked and unmarked double index tag (DIT) CWT stocks.

Creel samplers staffed four different access sites on 80 of the 151 days that Area 9 was open in winter 2008-09 under mark-selective harvest regulations. Samplers interviewed an estimated 36% of all participating anglers ($n=2,523$ angler trips) and sampled 34% of all marked Chinook harvested ($n=299$). Additionally, other PSSU staff conducted 20 aerial effort surveys, and spent 65 days (≈ 288 hours) on the water pursuing Chinook using test fishing methods, in support of Area 9 monitoring efforts. Based on these activities, we estimated that 7,064 angler trips were completed by private fleet anglers during winter 2008-09 in Area 9. With a CPUE of 0.13 Chinook landed per angler trip, these anglers harvested a grand total of 885 marked Chinook; they released an estimated 6,646 Chinook (3,651 marked, and 2,995 unmarked). Harvested Chinook averaged 70 cm (range: 53 to 91 cm) in total length and were larger than the legal minimum size limit (≥ 22 in or 56 cm TL) in most instances (dockside marked Chinook observations, 296 legal /301 total or 98%). Nearly two-thirds (64%) of all harvested individuals were 4 -year olds (brood year 2005), with age- 3 fish making up the majority of the remainder. In addition, 22 CWTs were recovered from harvested fish, the majority of which were from Puget Sound (73\%) and Hood Canal (18\%) release sites, and two CWTs (9\%) were recovered from a lower Columbia River release site.

Over the season in Area 9, test fishers encountered 312 Chinook salmon; of these, 18\% were legal size, and the legal-size mark rate was 84%. With a "CPUE" of 0.37 (LM Chinook encounters / angler trip), test fishers experienced more than twice the legal-marked Chinook encounter rate as did private fleet anglers. Chinook encountered by test fishers (for marked and unmarked fish combined) averaged 42 cm (range: 23 to 91 cm) in total length and as a group were predominantly 2 years in age (45% of marked and 40% of unmarked totals). Unmarked Chinook

[^0]encountered in the test fishery were predominantly one year old (45\%). We estimated the overall mark rate at 64% and the size/mark-status composition at 15.4% legal-marked, 2.9% legalunmarked, 48.4% sublegal-marked, and 33.3% sublegal-unmarked.

By combining dockside sampling results (i.e., legal-marked Chinook harvest estimates) and test fishery size/mark-status composition data, we generated size/mark-status group-specific estimates of encounters and mortalities. In total, 7,545 Chinook were encountered (retained and released) during the Area 9 fishery, with 1,001 of these being legal-marked, 172 legal-unmarked, 3,535 sublegal-marked, and 2,837 sublegal-unmarked individuals. Among released encounters, an estimated 20 legal-marked, 24 legal-unmarked, 704 sublegal-marked, and 567 sublegal-unmarked Chinook (1,315 overall) were estimated to have died due to handling and release effects. Thus, in total, 1,609 marked (55% due to direct harvest) and 604 unmarked Chinook mortalities occurred as a result of the winter 2008-09 Area 9 mark-selective fishery.

The number of fish estimated to have been impacted by the 2008-09 winter Area 9 fishery was considerably less than half of what was predicted based on Fishery Regulation Assessment Model runs (model run 2108). Whereas FRAM predicted that a total of 17,081 Chinook would have been encountered, actual encounters were estimated from creel surveys to be 44% of this value. Field data also suggested that actual legal-sized and sublegal-sized Chinook encounter rates were 18% and 60% lower, respectively, than those expected as a result of pre-season modeling.

Finally, regarding impacts of MSFs on the coded-wire tag (CWT) program, we estimated that 4 unmarked Chinook belonging to double-index tag (DIT) groups may have died due to the handling-and-release impacts of the pilot winter 2008-09 Area 9 mark-selective Chinook fishery.

INTRODUCTION

In recent years, abundant runs of hatchery Chinook salmon (Oncorhynchus tshawytscha) have been mixed with depressed runs of wild Chinook salmon in the marine environments of the Puget Sound and Strait of Juan de Fuca. Providing recreational anglers with opportunities to harvest abundant hatchery stocks while simultaneously protecting weaker, wild stocks has proven to be a significant conservation and management challenge. The combination of large-scale hatchery marking (i.e., fin clipping) programs and mark-selective harvest regulations makes it possible for anglers to pursue and harvest hatchery Chinook salmon while minimally impacting wild salmon populations. In such "mark-selective fisheries" (MSFs), anglers are generally allowed to retain adipose-fin clipped ("marked") hatchery fish and are required to release unharmed any unclipped ("unmarked", predominantly wild) salmon encountered ${ }^{2}$.

Since the first marine selective Chinook fishery occurred in Marine Catch Areas 5 and 6 (Strait of Juan de Fuca) in 2003 (WDFW 2008a), mark-selective Chinook salmon fishing regulations have been implemented on a pilot basis in multiple Puget Sound Marine Catch Areas during both summer and winter seasons. As of the close of the 2007-08 fishing season, pilot summer selective Chinook seasons have occurred in Areas 5 and 6 for six years (20032008; WDFW 2008a; WDFW 2009a) and in Areas 9, 10, 11, and 13 for two years (2007 and 2008; WDFW 2007a and 2007b, WDFW 2009b and 2009c); pilot winter selective Chinook fisheries have occurred in Areas 8-1 and 8-2 for three complete seasons (2005-06, 2006-07, and 2007-08; WDFW 2008b, WDFW 2009d). From November 1-30, 2008 and January 16April 15, 2009, the Washington Department of Fish and Wildlife (WDFW) implemented the second year of the mark-selective Chinook fishery in Area 9 during the winter season. Consistent with the 2004 Puget Sound Chinook Harvest Management Plan (Puget Sound Indian Tribes and WDFW 2004) and the intent of previous mark selective Chinook fisheries, the primary goal for this pilot fishery was to provide meaningful opportunity to the recreational angling public while minimally impacting ESA-listed Puget Sound Chinook salmon.

Given the pilot nature of the Area 9 winter selective Chinook fishery, WDFW's Puget Sound Sampling Unit was tasked with implementing an intensive monitoring program during the entirety of its winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) season. Our primary goal was to collect the data needed to estimate key parameters characterizing this fishery and its impacts on unmarked salmon. As per State-Tribal agreement (WDFW and NWIFC 2008), we tailored our sampling so that we could reliably estimate: i) the mark rate of the targeted Chinook population, ii) the total number of Chinook salmon harvested (by size [legal or sublegal] and mark-status [marked or unmarked] group), iii) the total number of Chinook salmon released (by size and mark-status group), iv) the coded-wire tag- (CWT)

[^1]and/or DNA-based stock composition of marked and unmarked Chinook mortalities ${ }^{3}$, and v) the total mortality of marked and unmarked double index tag (DIT) CWT stocks. In addition, we acquired and analyzed relevant data characterizing other aspects of the pilot fishery, including descriptors of fishing effort, fishing success (catch [landed Chinook] per unit effort), the length and age composition of encountered Chinook, and the overall intensity of our sampling efforts.

In the following pages, we report the results generated through our Area 9 monitoring activities. We first provide a brief review of our in-season sampling and post-season assessment methods and then present detailed results for each component of our selectivefishery monitoring program. Results are presented according to the following sequence: i) the intensity (i.e., spatial and temporal coverage) of sampling efforts is described; ii) estimates of fishery characteristics obtained from creel survey data are reviewed; iii) the results from our recreational test fishery are presented; and $i v$) total fishery impacts-estimated based on the combination of creel and test fishery data-are reviewed and compared with pre-season expectations (i.e., based on Fishery Regulation Assessment Model [FRAM] predictions). Finally, we provide a detailed description of our impact estimation scheme as well as additional and relevant data in a series of appendices (i.e., sample-rate tables and sampling summaries; age composition tables [for landed catch and test fishery encounters]; and raw CWT recoveries).

METHODS

Marine Catch Area Description

Marine Area 9 is a relatively large area encompassing over 200 square miles ($512 \mathrm{~km}^{2}$) of marine water in central Puget Sound. Area 9 starts at the mouth of Admiralty Inlet (i.e., its northern boundary is at the Partridge Point-Point Wilson line) and extends southward to the Apple Cove Point-Edwards Point line, including the marine waters extending south from Foulweather Bluff to the Hood Canal Bridge (Figure 1). As is the case for other winter salmon fisheries that occur in Puget Sound, immature Chinook salmon ("blackmouth") are the predominant fish targeted and encountered by anglers fishing in Area 9 during the winter months.

Monitoring Program Overview

Our sampling program for the Area 9 winter fishery incorporated comprehensive and complementary data collection strategies, including dockside angler interviews (with catch sampling), aerial effort surveys, test-fishery-based sampling, and voluntary reports of completed trips provided by private anglers (Figure 2). Given that winter 2008-09 was the first season in Area 9 in which we relied on aerial instead of boat surveys, we provide complete detail on this aspect of our design, which was used successfully during previous winter seasons in Area 7 (e.g., WDFW 2009e). For other aspects of our monitoring program, we provide only a brief review and refer the reader to WDFW (2007b or 2008b) for additional detail.

[^2]

Figure 1. Map of Marine Catch Area 9 in Puget Sound. Open white circles correspond to the approximate location of the four public ramps or marinas where angler interviews and catch sampling occurred: 1) Port Townsend Boat Haven Ramp; 2) Kingston Public Ramp; 3) Edmonds Marina Dry Stack; and 4) Everett Ramp (Norton/10th St).

Catch and Effort: Sampling and Estimation

We collected data on total catch (observed harvest and reported releases ${ }^{4}$) and total angling effort using an aerial-access design whereby: 1) catch and effort data were obtained by interviewing all anglers departing the fishery at four access sites that were staffed on randomly selected sample days (within Monday-Thursday and Friday-Sunday strata); 2) the fraction of total fishing effort contained in our sample frame was estimated from paired peak activity counts (i.e., boats) for sample frame sites and peak aerial boat counts (i.e., for all of Area 9) on days when both dockside sampling and aerial surveys were possible; and 3) total catch and effort estimates were obtained for all sample days by expanding sample-frame observations by the estimated sample fraction.

Dockside Sampling

We collected data on total catch and total angling effort using a two-stage stratified sample design. At the first stage, we selected five sample days from two temporal strata (weekday [Monday-Thursday], with $n=2$ days sampled; weekend [Friday-Sunday], with each day always being sampled) during each week of the Area 9 winter fishery. On selected sample days, we staffed access sites (i.e., public ramps, boathouses, etc.) for creel sampling. Our dockside sample frame included four moderate-to-high effort, public boat launch facilities used to access Area 9 (these were fixed sites throughout the season as part of the aerial-access design), including: Everett Ramp (Norton/10 ${ }^{\text {th }}$ St), Pt. Townsend Boat Haven Ramp, Edmonds Marina Dry Stack, and Kingston Public Ramp. In contrast to the approach we have used in other marine areas (i.e., $n=2$ sites are randomly [non-uniform probabilities based on-the-water interviews] chosen from a sample frame; WDFW 2007b), we staffed all four sites on scheduled sample days. We opted to visit all sample sites on scheduled sample days so that we could maximize our sample size and minimize the degree of expansion required to obtain fishery-wide estimates of catch, effort, and angler-reported releases. Finally, given that some effort was excluded from our sample frame (i.e., private and/or low-effort access sites), we estimated sample frame coverage from aerial overflight data and accounted for this quantity in estimates of fishery-wide totals (see below and Appendix A).

At access sites selected for sampling on scheduled sample days, samplers interviewed all parties (from both fishing and non-fishing vessels) exiting the Area 9 fishery. During interviews, samplers acquired data on trip duration (time of start, time of finish), trip intent (i.e., targeted species), fishing method(s) employed (downrigger or diver trolling, jigging, mooching, or other), and fish encountered (kept and/or released, by species). When an interviewed party possessed Chinook or coho salmon, samplers inspected them for CWTs using wand detectors, and collected snouts from CWT-positive individuals for later lab processing. Additionally, samplers took length measurements (fork and total) and scale samples from landed Chinook.

[^3]

Figure 2. Conceptual diagram of the monitoring plan implemented in Area 9 during its winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) mark-selective Chinook season. Circles represent discrete sampling activities, dashed boxes represent parameters that are estimated using data from a given activity, and solid boxes depict key quantities estimated from the comprehensive plan. 'Encounters' includes both harvested and released Chinook salmon.

Aerial Surveys

Due to its vast size and complex geography, we used an aerial overflight approach to estimate total Area 9 effort and thus the proportion of effort captured in our four-site sample frame (i.e., the sample fraction [$f=1$ - the out-of-frame effort prop'n]). Surveys were conducted on a subset ($n=20$; Appendix D) of scheduled (i.e., dockside) sample days and were timed to coincide with the assumed period of peak activity for winter fisheries (1000-1400). Trained WDFW staff conducted the surveys from fixed-wing aircraft piloted by WDFW-enforcement or chartered personnel. For each aerial survey, samplers (aerial observers) circumnavigated the entirety of Area 9 and counted all recreational vessels observed while marking them on a map form. Aerial observers made no attempt to distinguish recreational boats as being either fishing or non-fishing in nature; however, obvious non-fishing vessels such as sail boats, commercial crabbing vessels, etc., were noted as such on forms and omitted from final counts.

Flights took approximately 0.5 hour (time over Area 9) on average and were flown at an elevation of $1,000 \mathrm{ft}$ (305 m).

For each flight, we estimated the sample fraction, f, by pairing the aerial total boat count with the sample-frame total for boats active during the flight period (i.e., determined from interview details). We then obtained stratum-specific estimates of the mean sample fraction (and its variance) and used these values to obtain stratum- and fishery-total estimates of angling effort and landed catch (Table 1). The estimators (totals and variances) associated with this complemented aerial-access approach are provided in Appendix A. In addition, to minimize the influence of recall bias on our assessment, we estimated Chinook releases as the difference between estimated catch (i.e., based on observed landings) and total Chinook encounters (i.e., releases = encounters - retained catch) generated using the bias-corrected Conrad and McHugh (2008) approach. Briefly, encounters were estimated by dividing the creel estimate of legal-marked Chinook harvest by a field estimate of the proportion of the fishable Chinook population that is of legal size and marked (i.e., our former "Method 2" approach; e.g., WDFW 2007a). Given that this approach yields negatively biased estimates if anglers release any of the legal-marked Chinook they encounter, Conrad and McHugh estimated a "correction" factor to account for this phenomenon and incorporated it into their estimator. See Appendix B for complete computational details. Although we do not review estimates of Chinook releases based solely on angler accounts in our assessment, we supply these estimates, as well estimates of retained catch and/or releases for other salmon species, in Appendix G.

Voluntary Trip Reports -Charter and Private Boats

Although they were not used in producing creel estimates, Voluntary Trip Reports (VTRs) were also completed and returned by a subset of private fleet anglers, to obtain additional information on Chinook encounter rates by mark status and size class in the Area 9 winter 2008-09 mark-selective fishery. Anglers were asked to record the date, number of anglers, target species, catch Area, each Chinook or coho hooked, whether the fish was kept or released, species (if they positively identified the fish), total length to the nearest 1/8th inch, and whether the fish was adipose fin-clipped (marked) or not clipped (unmarked).

In the previous (January 16-April 15, 2008) season of the Area 9 winter selective Chinook fishery, we separated charter vessels from private (non-charter) boats in generating the catch and effort estimates for Area 9 (WDFW 2009f). We used the Murthy estimator method to estimate total salmon encounters for private boats in Area 9, while a complete census (from VTRs and follow-up phone calls) approach was used for charter boats. Given the logistical and estimation difficulties that arise as a result of our separate charter/fleet sampling breakout, we explored datasets from past years and considered bias analytically in order to identify the areas/seasons where a special charter treatment is absolutely necessary (analysis done by WDFW Biologist Peter McHugh, February 2009, with input from NWIFC Biometrician Robert Conrad). Briefly, we evaluated how much CPUEs for the overall fleet versus charter boats would have to differ and/or how great the charter effort proportion (of the total effort) would have to be in order for a meaningful bias to impacts our catch estimates. From this evaluation, we determined that pooling charter and fleet data in the creel estimates would not significantly compromise estimate integrity in the Area 9 winter selective fishery. The combination of charter effort proportions (very small) and CPUE ratios (relatively high)
suggested that pooling causes negligible ($<3 \%$) bias; therefore, we elected to include charter vessels in our creel estimates for the Area 9 winter fishery in 2008-09.

Test Fishery Methods

In order to obtain accurate estimates (i.e., free from survey-based recall error) of the size (legal or sublegal) and mark-status (marked or unmarked) composition of the pool of Chinook salmon encountered by anglers participating in the fishery, we conducted a recreational test fishery during the entirety of the winter 2008-09 mark-selective Chinook season in Area 9 (Table 1). Our test boat crew consisted of two WDFW technicians, each fishing with a single rod for approximately five days a week (Monday-Friday; weather permitting). Test fishers focused their efforts at locations that optimized their overall encounter rate and mirrored choices made by the at-large private fleet. Also, test fishers fished for Chinook using the same methods as the recreational fleet, as prescribed by supervisory staff based on dockside interview results for the preceding week. For each fish brought to boat, test fishers logged details on its identity (species), size (fork length and total length), and, if applicable, mark status (marked or unmarked). For Chinook salmon encounters only, test fishers additionally collected scale and DNA samples ($\sim 1-\mathrm{cm}^{2}$ piece of dorsal fin tissue).

Estimating Fishery Impacts

Total Encounters and Mortalities

We characterized the overall impacts of the fishery in terms of grand-total estimates of encounters and mortalities and by using estimates specific to each of the four size/mark-status groups (i.e., legal-marked [LM], sublegal-marked [SM], legal-unmarked [LU], and sublegalunmarked [SU]; Table 1). As indicated above and in contrast to previous post-season MSF reports (i.e., reports completed prior to August 2008), we used only one approach to estimate total Chinook encounters and, consequently, mortalities. This single method was selected as a result of a thorough state-tribal review of bias potential in estimators of encounters in MSFs (see Conrad and McHugh 2008 for details). In brief, total encounters were estimated by dividing creel estimates of legal-marked Chinook harvest by the test fishery-based proportion of the targeted Chinook population that was of legal size and marked, inclusive of a bias correction accounting for the modest level of legal-marked Chinook release that may occur in this fishery. We then decomposed total encounters into size/mark-status group-specific estimates using test-fishery encounters composition data.

We estimated total Chinook mortality resulting from the fishery by applying assumed mortality rates to the total harvest and release estimates for the four size/mark-status groups (LM, LU, SM, and SU). For retained Chinook, the mortality estimate was equivalent to the total harvest estimate for the applicable size/mark-status group. We applied selective fishing mortality (sfm) rates of 15% and 20% to legal (marked and unmarked) and sublegal (marked and unmarked) release totals, respectively, to estimate release mortality. See Appendix B for a complete description of our impact estimation procedure, including formulae for total and variance estimators.

The final step of our overall impacts assessment involved comparing fishery outcomes to preseason expectations. To do this, we compared season-total estimates of Chinook encounters and mortalities to pre-season modeled values (FRAM model run no. 2108) for each size and mark-status category.

Table 1. Sampling/estimation details on target parameters associated with the overall winter 2008-09 Area 9 mark-selective fishery monitoring program (Figure 1).

Activity	Focal Parameter(s)	Secondary Parameter(s)	Sample Unit(s)	Finest Estimation Time Step	Comments
Dockside Creel Sampling	Fishing effort (boat \& angler trips); kept and released fish ${ }^{1}$	Catch rates (CPUE); length, age, and CWT composition of harvest ${ }^{2}$	Angler trip; kept fish; reported fish release	Week ${ }^{1}$	Within weeks, estimates are also produced by strata (weekday/weekend).
Test Fishing	Size (legal/sublegal) and mark-status composition (marked, unmarked) of encountered Chinook	Chinook length, age, and DNA-based ${ }^{3}$ stock composition; species composition of nonChinook encounters	Fish encounter	1 month	Too few encounters occurred to assess mark rates on a finer time scale.
Overall Fishery Impacts Estimation	Total Chinook encounters and mortalities, by size/mark-status group	Ratios of encounters and mortalities per kept Chinook	N/A	1 month	The temporal resolution of impact estimates is constrained by that of the test-fishery encounters data.
Coded-wire tag (CWT) Impacts Estimation	Marked/unmarked double-index tag (DIT) encounters and mortalities	N/A	N/A	1 month	The temporal resolution of DIT impacts is constrained by the total number of tags recovered.

${ }^{1}$ Under the "bias-corrected Method-2" approach (Conrad and McHugh 2008), Chinook releases can be estimated only as finely as test fishery data allow.
${ }^{2}$ The length and CWT composition of landed catch was assessed on a season-wide basis for impact estimation.
${ }^{3}$ Though samples were collected, DNA-based estimates of stock composition are not yet available for this fishery.

CWT Impacts

To understand the potential effects of the Area 9 mark-selective fishery on CWT-based cohort-reconstruction efforts, we estimated the total number of unmarked-tagged Chinook mortalities that may have occurred during the course of its November 1-30, 2008, and January 16 - April 15, 2009 season. To do this, we acquired information for all marked CWT double index tag (DIT) groups present in landed catch from the Pacific States Marine Fisheries Commission's Regional Mark Information System (RMIS) and then applied the methods described by the Selective Fisheries Evaluation Committee - Analysis Work Group (SFECAWG 2002) to estimate the number of unmarked DIT fish encountered ${ }^{5}$. We subsequently estimated the number of these fish that may have died due to hook-and-release impacts using an $s f m$ analogous that used in FRAM modeling. Given our interest in characterizing the impacts of mark-selective regulations on the CWT program and not recreational fishing in general, we used an sfm of 10% in all unmarked-DIT mortality calculations. Thus, we used

[^4]10% instead of 15% (applied above to legal-sized releases) since unseen drop-off mortality (the 5% differential) is a feature common to selective and non-selective recreational Chinook fisheries.

RESULTS \& DISCUSSION

Summary of Sampling Efforts

Ramp samplers were present at the four access sites in our sample-frame (Pt. Townsend Boat Haven Ramp, Kingston Public Ramp, Everett Ramp [Norton/10 ${ }^{\text {th }}$ St], and Edmonds Marina Dry Stack) for the entirety (dawn-dusk shifts) of 80 scheduled sample days (Table 2). Dockside efforts yielded samples of 1,084 boat trips (68% fishing, 32% non-fishing), 2,523 angler trips, and 301 landed Chinook (299 marked and 2 unmarked) throughout the fishery.

In total, we conducted 20 over-flights during the four-month fishery, and 18 of these (5 weekday, 3 Friday, and 10 weekend flights; Appendix D) included boats that were also sampled at the dockside sites in our sample frame. All flights occurred during periods of high activity, and viewing conditions were excellent in all cases. Over the 20 surveys, aerial observers counted between 2 and 211 (average $=54$) recreational vessels in Area 9; between 1 and 82 (average $=22$) of these boats returned to sites contained in our dockside sample frame (based on trip times reported during interviews).

Table 2. Dockside creel sampling dates for the 2008-09 Area 9 winter mark-selective fishery (November 1-30, 2008 and January 16-April 15, 2009). Shaded cells are days when dockside creel sampling was conducted at all four sample-frame sites; "A" denotes days when aerial surveys occurred; "TF" represents test-fishing days.

November 2008

Sun.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.

January 2009

Sun.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
$\mathbf{T F}$				TF		

February 2009

Sun.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.
1	2	3	4	5	6	7
A	TF	TF	TF	TF		
8	9	10	11	12	13	14
	TF	TF	TF	TF	TF	A
15	16	17	18	19	20	21
		TF	TF	A, TF	TF	A
22	23	24	25	26	27	28
	TF				A, TF	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{March 2009}

\hline Sun. \& Mon. \& Tues. \& Wed. \& Thurs. \& Fri. \& Sat.

\hline \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{$\begin{array}{ll}2 & \\ \\ \text { TF }\end{array}$} \& \multirow[t]{3}{*}{3

TF} \& \multirow[t]{2}{*}{$\begin{array}{ll}4 & \\ \\ & \text { TF }\end{array}$} \& \multirow[t]{2}{*}{$\begin{array}{ll}5 & \\ \\ & \text { TF }\end{array}$} \& \multirow[t]{2}{*}{| 6 | |
| :--- | ---: |
| | |} \& \multirow[t]{2}{*}{7}

\hline \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{8} \& \multirow[t]{3}{*}{9

TF} \& \& 11 \& 12 \& 13 \& \multirow[t]{2}{*}{14}

\hline \& \& \multirow[t]{2}{*}{10
TF
17} \& TF \& TF \& A \&

\hline \multirow[t]{2}{*}{15} \& \& \& 18 \& 19 \& 20 \& 21

\hline \& TF \& $\begin{array}{rr}17 \\ \\ & \text { A }\end{array}$ \& TF \& TF \& TF \& A

\hline \multirow[t]{2}{*}{22} \& \multirow[t]{2}{*}{23} \& 24 \& 25 \& 26 \& 27 \& \multirow[t]{2}{*}{28}

\hline \& \& TF \& TF \& TF \& TF \&

\hline 29 \& 30 \& 31 \& \& \& \&

\hline A \& TF \& \& \& \& \&

\hline
\end{tabular}

April 2009

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sun. \& Mon. \& Tues. \& Wed. \& Thurs. \& Fri. \& Sat.

\hline \multirow[t]{2}{*}{} \& \& \& \multirow[t]{2}{*}{1} \& \multirow[b]{2}{*}{TF} \& \multirow[b]{2}{*}{TF} \& \multirow[t]{2}{*}{4

A}

\hline \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{5} \& 6 \& 7 \& 8 \& \multirow[t]{2}{*}{9} \& 10 \& 11

\hline \& TF \& TF \& TF \& \& A, TF \& A

\hline 12 \& 13 \& 14 \& 15 \& 16 \& 17 \& 18

\hline \& TF \& \& TF \& \& \&

\hline 19 \& 20 \& 21 \& 22 \& 23 \& 24 \& 25

\hline 26 \& 27 \& 28 \& 29 \& 30 \& \&

\hline
\end{tabular}

Based on the combination of aerial boat counts and dockside observations of boats active during flights, we estimated that on average approximately half (45\%) of all Area-9 fishing effort originated from sites contained in our sample frame (Appendix D). At 49\% and 43\%, respectively, the average sample fraction was higher for weekdays than it was for weekends; these differences were not significant, however (Appendix A); thus, flight data were pooled across weekend and weekday strata for total estimation.

Fishery Characteristics

Estimates of Fishing Effort and Catch

An estimated 7,064 angler trips were completed by private fleet anglers during the winter 2008-09 Area 9 mark-selective Chinook fishery (Table 3). Anglers harvested a grand total of 885 estimated marked Chinook (and 14 unmarked) and released an additional 6,646 Chinook (3,651 marked, and 2,995 unmarked).

Characteristics of Harvested Chinook

Length and Age.-During the course of the Area 9 winter fishery, 299 (294 legal, 5 sublegal) retained marked Chinook salmon were sampled at dockside (Table 4); in addition, 2 unmarked Chinook were sampled at dockside (all were legal size). All of these fish were measured and examined for the presence of a CWT. Harvested Chinook ranged from 53 to 91 cm and averaged $70 \mathrm{~cm}(\mathrm{SD}=7 \mathrm{~cm})$ in total length (Figure 3). Overall, the majority (296/301 or 98.3%) of Chinook harvested were of legal size (≥ 22 in or 56 cm TL).

While scales were collected from all 301 sampled Chinook, only 276 (274 ad-marked and 2 unmarked) of these could be aged (Appendix E). Over half (64%) of all aged Chinook were 4 years old (brood year 2005), and 95% of aged individuals were subyearlings upon
outmigration from freshwater. The remaining age samples were primarily from brood year 2006 (age $3.1=33 \%$ of total).

CWT Samples.-We recovered a total of 22 coded-wire tags from the 299 retained marked Chinook salmon that were examined as part of our dockside sampling efforts (Table 5;
Appendix F). The majority of CWT fish were from Puget Sound (73\%) and Hood Canal (18%) release sites, with the remaining 9% coming from a lower Columbia River production facility. In addition, 12 of the CWTs recovered were associated with a double-index tag (DIT) group (See Overall Fishery Impacts: Estimated CWT-DIT Impacts for estimated unmarked-DIT mortality results).

Table 3. Estimates of total fishing effort and total salmon catch (harvest and reported releases) during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective fishery. Values may not add exactly due to rounding error. $\mathrm{AD}=$ marked (i.e., adipose-clipped), $\mathrm{UM}=$ unmarked.

Month	Stat Week	Start Date	End Date	Est. Effort		Est. Retained Chinook		Est. Released Chinook ${ }^{\text {1// }}$		Total Est. Chinook Encounters
				Boats	Anglers	AD	UM	AD	UM	
Nov	44	01-Nov	02-Nov	294	614	61	0	411	477	950
	45	03-Nov	09-Nov	138	265	10	0	66	76	152
	46	10-Nov	16-Nov	265	515	58	0	395	458	912
	47	17-Nov	23-Nov	221	420	107	0	724	840	1,671
	48	24-Nov	30-Nov	510	932	95	5	642	740	1,481
Subtotal: November 1-30, 2008				1,427	2,745	330	5	2,238	2,592	5,165
Variance:				10,098	38,596	838	13	540,321	727,742	2,804,695
Standard Error:				100	196	29	4	735	853	1,675
CV (\%):				7\%	7\%	9\%	73\%	33\%	33\%	32\%
95\% CI:				1,230-1,624	2,360-3,130	273-387	2-12	797-3,679	920-4,264	1,883-8,448
Month	Stat Week	Start Date	End Date	Est. Effort		Est. Retained Chinook		Est. Released Chinook ${ }^{\text {1// }}$		Total Est. Chinook Encounters
				Boats	Anglers	AD	UM	AD	UM	
$\begin{gathered} \text { Jan - } \\ \text { Apr } \end{gathered}$	3	16-Jan	19-Jan	214	423	81	2	206	58	347
	4	20-Jan	25-Jan	111	231	33	0	85	25	143
	5	26-Jan	01-Feb	153	285	47	0	119	35	200
	6	02-Feb	08-Feb	301	574	91	0	231	67	390
	7	09 -Feb	$16-\mathrm{Feb}$	401	876	108	0	275	80	463
	8	17-Feb	22-Feb	229	471	75	0	190	55	320
	9	23-Feb	28-Feb	138	271	48	0	122	36	206
	10	02-Mar	08-Mar	103	190	24	0	61	18	103
	11	09-Mar	15-Mar	63	109	2	0	6	2	9
	12	16-Mar	22-Mar	138	280	13	7	33	3	56
	13	23-Mar	29-Mar	39	63	0	0	0	0	0
	14	30-Mar	05-Apr	214	389	22	0	56	16	94
	15	06-Apr	12-Apr	87	155	11	0	28	8	47
	16	13-Apr	15-Apr	3	3	0	0	0	0	0
Subtotal: Jan 16-Apr 15, 2009				2,195	4,319	555	9	1,413	403	2,380
Variance:				8,339	29,497	2,293	1	83,752	9,979	215,055
Standard Error:				91	172	48	1	289	100	464
CV (\%):				4\%	4\%	9\%	11\%	20\%	25\%	19\%
95\% CI:				2,016-2,374	3,982-4,655	462-649	7-11	846-1,980	207-599	1,471-3,289
Season Total:				3,622	7,064	885	14	3,651	2,995	7,545
Variance:				18,437	68,093	3,131	14	624,073	737,721	3,019,750
Standard Error:				136	261	56	4	790	859	1,738
CV (\%):				4\%	4\%	6\%	27\%	22\%	29\%	23\%
95\% CI:				3,356-3,888	6,553-7,575	776-995	6-21	2,103-5,200	1,312-4,679	4,140-10,952

${ }^{1 /}$ Released Chinook were estimated as the difference between total Chinook encounters generated using a bias-corrected
"Method 2" estimator (see Appendix A and Conrad and McHugh (2008) for additional details) and creel estimates of retained Chinook.

Table 4. Summary of total length samples collected from retained Chinook during dockside angler interviews in the winter 2008-09 Area 9 mark-selective Chinook fishery, November 1-30, 2008 and January 16April 15, 2009.

Mark Type	Number Sampled November		Total
	Legal-size	Sublegal-size	
Marked	87	1	08
Unmarked	0	0	$\mathbf{8 8}$
Subtotal November:	$\mathbf{8 7}$	$\mathbf{1}$	
	Number Sampled January-April		Total
Mark Type	Legal-size	Sublegal-size	
Marked	207	4	2
Unmarked	2	0	$\mathbf{2 1 3}$
Subtotal Jan-April:	$\mathbf{2 0 9}$	$\mathbf{4}$	$\mathbf{3 0 1}$
Season Total	$\mathbf{2 9 6}$	$\mathbf{5}$	

Figure 3. Length-frequency distribution for marked Chinook harvested during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.

Table 5. Summary of coded-wire tags recovered from Chinook salmon harvested during the winter 2008-09 Area 9 mark-selective Chinook fishery. The field "\# DITs" corresponds to the number of tags that belonged to double-index tag groups.

Release Region	Release Site	Rearing Location	CWTs Recovered	No. DITs
Lower Columbia River	Spring Creek	Spring Creek NFH	2 (9.1\%)	2
Hood Canal	Finch Creek	Hoodsport Hatchery	1 (4.5\%)	
	Purdy Creek	George Adams Hatchery	3 (13.6\%)	3
Puget Sound-Central	Big Soos Creek	Unreported	1 (4.5\%)	1
	Green River	Icy Creek Hatchery	3 (13.6\%)	
	Grovers Creek	Grovers Creek Hatchery	3 (13.6\%)	3
Puget Sound-North	Friday Creek	Samish Hatchery	2 (9.1\%)	2
	Skagit River	Unreported	1 (4.5\%)	
	Whitehorse Springs	Whitehorse Pond	1 (4.5\%)	
Puget Sound-South	Chambers Creek	Garrison Hatchery	1 (4.5\%)	
	Chambers Creek	Lakewood Hatchery	1 (4.5\%)	
	Clear Creek	Nisqually Hatchery	1 (4.5\%)	1
	Cowskull Acclimation Pond	Cowskull Acclimation Pond	1 (4.5\%)	
	Voight Creek	Voight Creek Hatchery	1 (4.5\%)	
		Grand Total	22	12

${ }^{1}$ Unofficial release regions. Puget Sound regions were designated based on the WDFW marine catch area containing the river/stream network where juvenile releases originated (i.e., Areas 11 and $13=$ South; Areas 9 and $10=$ Central; and Areas 7, 8-1, and 8-2 $=$ North).

Test Fishing Results

Fishing Time and Gear Type

In total, test fishers spent 65 days and 287.8 hours on the water pursuing Chinook salmon during the Area 9 2008-09 winter fishery (Table 6). Given that the majority (94\%) of the interviewed anglers who successfully encountered Chinook salmon reported doing so while trolling with downriggers, test fishers also pursued Chinook using this method the majority of the time (98%), while they spent the remaining 2% of their test fishing time using the weight-and-bait method (Table 7).

Chinook Encounters and Mark Rates

In total, test fishers encountered 312 Chinook salmon as a result of their 65 days and 287.8 hours of fishing. Legal-size Chinook made up 18% of the sample, and the majority of these were adipose fin clipped (legal-size Chinook mark rate: 84%; Table 6). The overall mark rate ($[\mathrm{LM}+\mathrm{SM}] /$ total encounters) was 64%. With a "CPUE" (i.e., LM Chinook encounters / angler trip) of 0.37 , test fishers experienced over twice the encounter rate as private fleet anglers (0.13 LM Chinook encounters/angler trip).

Table 6. Composition of test fishery Chinook encounters and associated mark-rate and size/mark-status proportion estimates for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery. Variances associated with size/mark-status proportions and mark rates are provided in parentheses.

Table 7. Fishing methods employed by private recreational anglers (from dockside interviews, based on number of boat trips sampled, $n=620$) and test fishers (based on hours fished, $n=288$) during the Area 92008-09 winter (November 1-30, 2008 and January 16-April 15, 2009) mark-selective Chinook fishery.

Statistical Week	DR		WB		Diver		Jig	
	Tst Boat	Private						
44	100.0%	94.9%	0.0%	3.8%	0.0%	1.3%	0.0%	0.0%
45	100.0%	92.3%	0.0%	3.8%	0.0%	3.8%	0.0%	0.0%
46	72.3%	88.9%	27.7%	5.6%	0.0%	0.0%	0.0%	5.6%
47	100.0%	94.4%	0.0%	1.9%	0.0%	1.9%	0.0%	1.9%
48	100.0%	98.2%	0.0%	1.8%	0.0%	0.0%	0.0%	0.0%
3	0.0%	93.8%	100.0%	3.1%	0.0%	0.0%	0.0%	3.1%
4	100.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
5	100.0%	88.6%	0.0%	5.7%	0.0%	0.0%	0.0%	5.7%
6	100.0%	89.7%	0.0%	7.4%	0.0%	0.0%	0.0%	2.9%
7	100.0%	92.5%	0.0%	7.5%	0.0%	0.0%	0.0%	0.0%
8	100.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
9	100.0%	93.1%	0.0%	6.9%	0.0%	0.0%	0.0%	0.0%
10	100.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
11	100.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
12	100.0%	95.6%	0.0%	0.0%	0.0%	0.0%	0.0%	4.4%
13	100.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
14	100.0%	94.3%	0.0%	2.9%	0.0%	0.0%	0.0%	2.9%
15	100.0%	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
16	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Total	$\mathbf{9 7 . 6 \%}$	$\mathbf{9 4 . 2 \%}$	$\mathbf{2 . 4 \%}$	$\mathbf{3 . 5 \%}$	$\mathbf{0 . 0 \%}$	$\mathbf{0 . 5 \%}$	$\mathbf{0 . 0 \%}$	$\mathbf{1 . 8 \%}$

Furthermore, we observed that the Chinook encounter rates in the test fishery (the four mark/size group proportions --LM, LU, SM, and SU) were quite different when comparing subtotals from the November 1-30, 2008 period versus that for the January 16-April 15, 2009 period of the Area 9 winter fishery -e.g., the proportion of legal-marked Chinook was 0.07 in November 2008, whereas it was 0.23 for the January-April 2009 time period (Table 6). Consequently, we conducted chi-square $\left(\chi^{2}\right)$ tests to evaluate whether or not the frequency of observations for the four mark/size groups differed significantly for the November 2008 period compared to the January-April 2009 period. Results of the chi-squared test showed that the frequency of observations for the four mark/size groups differed significantly between the two time periods ($\chi^{2}=62.7707, \mathrm{df}=3, P=1.503 \mathrm{e}-13$).

Thus, we treated the November 2008 and January 16 through April 15, 2009 time periods as two separate sub-seasons (two strata) within the overall Area 9 winter selective season. For the November 2008 time period, dockside interview data (creel estimates) and test fishery results (size/mark status composition) from the month of November 2008 were applied in generating total-Area Chinook encounter estimates (Table 3) and associated impact estimates for the period from November 1-30, 2008. Likewise, for the January through April 2009 stratum, dockside interview data and test fishery size/mark status composition results obtained from January 16 through April 15, 2009 were used to generate total-Area Chinook encounter estimates and associated impact estimates for the January-April time period.

Based on the voluntary trip reports (VTRs) returned by private-boat anglers ($n=79$ angler trips and 130 encounters total; Table 8) participating in the Area 9 winter fishery, test fishers observed mark rates that were consistent with those experienced by the fleet. Anglers reported 31 legal-size marked encounters on VTRs, yielding the same legal-size mark rate (84%) as observed in the test fishery. The overall mark rate (legal and sublegal fish combined) was slightly lower in the test fishery (64\%) compared to the mark rate from VTRs (73\%).

We compared test fishery and VTR data sources to evaluate whether or not the frequency of observations in the four size/mark status categories of Chinook encounters (i.e., legal or sublegal size classes and marked or unmarked groups) differed significantly between the two data sources. Results of chi-squared tests showed that the four size/mark status group proportions were significantly different for season-total VTR data versus season-total test fishery data $\left(\chi^{2}=8.2, \mathrm{df}=3, P=0.042\right)$. In contrast, for VTR data versus the test fishery data from the January through April 2009 sampling period only, the size/mark status group comparisons from the two data sources were not significantly different ($\chi^{2}=5.8, \mathrm{df}=3, P=$ 0.121 ; Table 8).

Table 8. Total Chinook encountered (retained and released) by private-boat anglers reporting their catch on voluntary trip reports (VTRs) compared to test fishery results, with estimates of legal, sublegal, and overall mark rates, during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.

Time Period	Data source	Effort \& Sample Size	Legal		Sublegal			Mark Rates	
			AD	UM	AD	UM	Total	Overall	Legal
$\begin{aligned} & \hline \text { Nov } \\ & 2008 \end{aligned}$	Test Fishery	16 days, 32 Angler Trips	13	1	76	89	179	0.50	0.93
	Private VTR	$\begin{aligned} & 11 \text { 1-trip VTRs, } 21 \\ & \text { Angler Trips } \end{aligned}$	3	2	36	15	56	0.70	0.60
	Pooled data	53 Angler Trips	16	3	112	104	235	0.545	0.842
	Size/mark-status composition:		0.068 0.013 0.477 0.443 (0.000) (0.000) (0.001) (0.001)						
$\begin{gathered} \hline \text { Jan 16- } \\ \text { Apr } 15 \\ 2009 \end{gathered}$			Legal		Sublegal			Mark Rates	
	Data source	Effort \& Sample Size	AD	UM	AD	UM	Total	Overall	Legal
	Test Fishery	49 days, 98 Angler Trips	35	8	75	15	133	0.83	0.81
	Private VTR	34 1-trip VTRs, 58 Angler Trips	28	4	28	14	74	0.76	0.88
	Pooled data	166 Angler Trips	63	12	103	29	207	0.802	0.840
	Size/mark-status composition		$\begin{gathered} \hline 0.304 \\ (0.001) \end{gathered}$	$\begin{gathered} \hline 0.058 \\ (0.000) \end{gathered}$	$\begin{gathered} \hline 0.498 \\ (0.001) \end{gathered}$	$\begin{gathered} \hline 0.140 \\ (0.001) \end{gathered}$			
Entire Season	All Data Pooled	219 Angler Trips	79	15	215	133	442	0.665	0.840
	Size/mark-status composition:		$\begin{gathered} 0.179 \\ (0.000) \end{gathered}$	$\begin{gathered} \hline 0.034 \\ (0.000) \end{gathered}$	$\begin{gathered} \hline 0.486 \\ (0.001) \end{gathered}$	$\begin{gathered} \hline 0.301 \\ (0.000) \end{gathered}$			

Chinook Size and Age

For marked and unmarked groups combined, the size (total length) of Chinook encountered by test fishers ranged from 23 to 91 cm and averaged $42 \mathrm{~cm}(\mathrm{SD}=16)$. Between groups, marked Chinook averaged slightly larger (mean $=45$; Figure 4) than unmarked Chinook (mean $=35$; Figure 4) but this 10 cm difference in size was not significant (two-sample t-test: $t=-0.08 \mathrm{df}=310, P=0.938$). At 69 cm , the average size of legal-marked Chinook encountered by test fishers was similar to that for Chinook sampled in the private fleet's catch at dockside (i.e., 70 cm). Based on 282 readable scales ($176 \mathrm{AD}, 106 \mathrm{UM}$) collected from Chinook encountered in the test fishery, nearly three-quarters ($66 \% \mathrm{AD}, 85 \% \mathrm{UM}$) of all marked and unmarked individuals present in the targeted pool of Chinook were less than 3.1 years old (Appendix E).

Figure 4. Length-frequency distributions of marked (left panel) and unmarked (right panel) Chinook encountered by test fishers during the winter 2008-09 Area 9 (November 1-30, 2008 and January 16-April 15, 2009) mark-selective Chinook fishery. Note that the vertical dashed line in the upper panel corresponds to the legal size limit (22 in or 56 cm).

Other Fish Species Encountered

In addition to the 312 Chinook salmon encounters described above, test fishers caught and released 129 other fish from 12 different species (Table 9). The majority of the other species encountered consisted of coho (40%) and Pacific sanddab (36\%).

Table 9. Test fishery catches of species other than Chinook salmon during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.

Common Name	Scientific Name	Number			
Brown rockfish	Sebastes auriculatus	1			
Speckled sanddab	Citharichthys stigmaeus	1			
Copper rockfish	Sebastes caurinus	2			
Redstripe rockfish	Sebastes proriger	2			
Walleye pollock	Theragra chalcogramma	2			
Pacific staghorn sculpin	Leptocottus armatus	3			
Rock sole	Lepidopsetta bilineata	3			
Quillback rockfish	Sebastes maliger	4			
Lingcod	Ophiodon elongatus	7			
Pacific cod	Gadus macrocephalus	7			
Pacific sanddab	Citharichthys sordidus	46			
Coho	Oncorhynchus kisutch	51			
	Total				$\mathbf{1 2 9}$

Overall Fishery Impacts

Total Encounters and Mortalities

Based on the combination of dockside sampling results (i.e., legal-marked Chinook harvest estimates derived from data in Table 3 and Table 4) and the test fishery size/mark-status composition data (Table 6), we estimated that that 1,001 legal-marked, 172 legal-unmarked, 3,535 sublegal-marked, and 2,837 sublegal-unmarked Chinook salmon were encountered by anglers fishing during the Area 9 winter selective fishery (Table 10). These encounters were comprised of an approximately 1:7.4 mix of retained (899 fish) and released (6,646 fish) Chinook salmon. Further, we estimated that 3.4 unmarked Chinook salmon and 7.6 Chinook salmon overall were handled per legal-marked fish harvested. Given the assumed mortality rates of 0.20 for sublegal- and 0.15 for legal-sized Chinook salmon, we additionally estimated that 20 legal-marked, 24 legal-unmarked, 704 sublegal-marked, and 567 sublegal-unmarked Chinook (1,315 overall) died due to handling-and-release effects; this translates into an estimated 0.7 unmarked and 0.8 marked Chinook release mortality per legal-marked Chinook retained. In total, we estimated that 2,214 Chinook (1,609 marked and 604 unmarked) mortalities occurred- 41% due to direct harvest-as a result of the Area 9 winter markselective fishery. In addition, given the 312 (48 LM, 9 LU, 151 SM, 104 SU) Chinook caught and released in the Area 9 test fishery, an estimated 59 (37 marked, 22 unmarked) Chinook may have died as a result of our sampling activities.

FRAM versus Creel Comparison

The number of fish estimated to have been impacted by the 2008-09 winter Area 9 fishery was considerably less than half of what was predicted based on pre-season modeling results. Whereas FRAM predicted that a total of 17,081 Chinook would have been encountered, creel survey data indicated that actual encounters were estimated to be 44% of this value (Table 11,

Figure 5). Field data also suggested that actual legal-sized and sublegal-sized Chinook encounter rates were 18% and 60% lower, respectively, than those expected as a result of preseason modeling. For harvest and release mortality combined, FRAM predicted that a total of 1,156 unmarked, 9,542 marked, and 10,698 Chinook overall would die during the Area 9 winter selective season (Table 12, Figure 5), with a nearly 40:60 harvest and release mortality prediction. In contrast, creel results indicate that one-fifth as many fish may have died during the course of the fishery, with 40% of these impacts being due to markedChinook harvest.

Table 10. Summary of season-wide fishery impact estimates for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 markselective Chinook fishery. Values may not add up perfectly due to rounding error.

$\begin{array}{rr}\text { Total Encounters (E): } & \mathbf{7 , 5 4 5} \\ \text { V(E): } & \mathbf{2 , 2 8 5 , 5 4 2}\end{array}$										
Size/mark group	Encounters	No. Retained	No. Rel'd	Rel. Mort. Rate	Rel. Mort.	Total Mortality	Var	SE	95\% CI	CV (\%)
Legal marked	1,001	871	130	0.15	20	891	3,227	57	779-1002	6
Legal unmarked	172	14	158	0.15	24	37	99	10	18-57	27
Sublegal marked	3,535	14	3,520	0.20	704	718	19,178	138	447-990	19
Sublegal unmarked	2,837	0	2,837	0.20	567	567	22,621	150	273-862	27
All groups combined	7,545	899	6,646		1,315	2,214	45,126	212	1797-2630	10

Table 11. Comparison of modeled (i.e., using FRAM, model run 2108) and estimated total Chinook encounters for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.

Data Source	Group	Total Encounters	Legal	Sublegal	Landed Only
FRAM Encounters	Unmark.	5,056	2,271	2,785	136
	Mark.	12,025	4,110	7,915	3,864
	Total	17,081	6,381	10,700	4,000
	\% Mark.	70	64	74	97
Estimated (Creel)	Unmark.	3,009	172	2,837	14
Encounters	Mark.	4,537	1,002	3,536	885
	Total	7,546	1,174	6,372	899
	\% Mark.	60	85	56	99

Table 12. Comparison of modeled (i.e., using FRAM, model run 2108) and estimated total Chinook mortalities for the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.

	FRAM Chinook Mortalities		Estimated Chinook Mortalities			
Mortality Category	Unmark.	Mark.	Total	Unmark.	Mark.	Total
Total (Landed + Released)	1,156	9,542	10,698	605	1,609	2,214
Released Legal	463	4,095	4,558	24	20	43
Released Sublegal	557	1,583	2,140	567	704	1,272
Landed Only	136	3,864	4,000	14	885	899

Figure 5. Comparison of modeled (i.e., using FRAM, model run 2108) and estimated total Chinook encounters (upper panel) and mortalities (lower panel) for the 2008-09 Area 9 winter mark-selective Chinook fishery. Error bars represent approximate 95% confidence intervals for field estimates.

Estimated CWT-DIT Impacts

Of the 22 coded-wire tags recovered during the Area 9 fishery, 12 belonged to double-index tag (DIT) release groups (Table 13). Based on the release details associated with these tags and their unmarked sister groups, we obtained an estimate of the unmarked-to-marked release ratio (λ) at juvenile release for each applicable hatchery of origin and brood year, and we used this value to estimate total unmarked DIT encounters for the entirety of the Area 9 winter fishery. In total, we estimated that 40 unmarked-DIT Chinook were caught and released during the fishery, 33% of which were of Grovers Creek Hatchery origin (brood year 2005) and 23% of which were of George Adams Hatchery origin (brood years 2005 and 2006). Given an sfm rate of 0.10 , we estimate that as many as four of the unmarked-DIT Chinook may have died as a result of Area 9 winter mark-selective fishery.

Table 13. Summary of double-index tagged (DIT) Chinook kept by anglers, and estimated total mortality of unmarked DIT Chinook due to hook-and-release impacts resulting from the Area 9 mark-selective Chinook fishery from November 1-30, 2008 and January 16-April 15, 2009. AD $=$ marked (i.e., adipose-clipped), $\mathrm{UM}=$ unmarked.

Hatchery	Brood Year	DITs Obs'd	AD DIT Harvest		$\begin{aligned} & \hline \text { UM } \\ & \text { DIT } \\ & \text { Enc. } \end{aligned}$	UM DIT Mortality		
			Est.	$\operatorname{var}($ Est.)		Est.	var (Est.)	SE(Est.)
George Adams Hatchery	$\begin{aligned} & 2005 \\ & 2006 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 6.45 \\ & 2.64 \end{aligned}$	$\begin{gathered} 15.05 \\ 4.33 \end{gathered}$	$\begin{aligned} & 6.45 \\ & 2.91 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \hline 0.54 \\ & 0.23 \end{aligned}$
Grovers Creek Hatchery	2005	3	10.26	25.77	13.39	1.34	0.44	1.13
Nisqually Hatchery	2005	1	3.81	10.72	4.29	0.43	0.14	0.37
Samish Hatchery	2005	2	4.84	6.98	4.40	0.44	0.06	0.34
Soos Creek Hatchery	2005	1	3.81	10.72	3.91	0.39	0.11	0.34
Spring Creek NFH	2006	2	4.84	6.98	4.84	0.48	0.07	0.37
TOTAL		12	36.67	80.55	40.19	4.02	1.02	3.30

ACKNOWLEDGEMENTS

This review of the Area 9 winter 2008-09 mark-selective Chinook fishery is a result of the dedicated efforts of several individuals. Slim Simpson (Central Sound Sampling Supervisor), Larry Bennett (Peninsula Region Sampling Supervisor), and their sampling crews led the data collection efforts in Area 9. Dockside samplers included Jessica Slipper at Port Townsend Ramp, Mary Raymond at Kingston Ramp, Courtney Adkins at Edmonds Dry Stack, as well as Sue Kraemer and Amy Willoughby at the Everett/Norton Street Ramp. Central Sound lead staff Slim Simpson, Jeff McKee, and Kathy Young-Berg, as well as Peninsula lead staff Larry Bennett and Connie Warren, greatly assisted in the summarization and error checking of data and in leading other aspects of Area 9 sampling efforts. Toby Black, Pete Sergeeff, and Courtney Adkins (all supervised by Slim Simpson) conducted test fishing throughout the Area 9 winter fishery. In addition, several WDFW staff based in the Olympia Headquarters office collected effort data during aerial surveys over Area 9, including Mark Baltzell, Jerry Weinandt, Ellie Heikkila, Chris Moran, and Laura Klein.

At WDFW Headquarters in Olympia, we thank both Lance Campbell and John Sneva for their scale-reading expertise. We also thank Gil Lensegrav and the CWT Lab staff for their help and expertise in providing decoded CWT data. Also at the Olympia Headquarters office, Lee Dyer provided substantial help with personnel logistics and support services for the project. Karen Kloempken managed the WDFW sampling databases and provided finalized postseason data. WDFW Biologists Steve Caromile and Are Strom worked on database development in order to better manage, query, and report on the selective fishery data; in addition, Are Strom completed "R" programming updates to enable efficient analyses of selective fishery data and produce tables and figures for this post-season report. Biologists Mark Baltzell, Karen Kloempken, Steve Caromile, and Laurie Peterson prepared this postseason report.

REFERENCES

Cochran, W.G. 1977. Sampling Techniques (third edition). John Wiley and Sons. New York.
Conrad, R., and P. McHugh. 2008. Assessment of Two Methods for Estimating Total Chinook Salmon Encounters in Puget Sound/Strait of Juan de Fuca Mark-Selective Chinook Fisheries. Northwest Fishery Resource Bulletin Manuscript Series No. 2. http://www.nwifc.org/publications/northwest-fishery-resource-bulletin/; http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
SFEC-AWG. 2002. Pacific Salmon Commission, Joint Selective Fisheries Evaluation Committee Report, Investigation of methods to estimate mortalities of unmarked salmon in mark-selective fisheries through the use of double index tag groups. TCSFEC (02)-1, February 2002.
Murthy, M.N. 1957. Ordered and unordered estimators in sampling without replacement. Sankhya 18:379-390.
Puget Sound Indian Tribes and WDFW. 2004. Comprehensive Management Plan for Puget Sound Chinook: Harvest Management Component. Olympia, WA. 253 pp.
Washington Department of Fish and Wildlife (WDFW). 2007a. Marine Areas 9 and 10 Selective Chinook Fishery, July 16-31, 2007: Post-season Report. Draft Report: October 3, 2007. Washington Department of Fish and Wildlife. Olympia, Washington. 82 pp . http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW). 2007b. Marine Areas 11 and 13 Selective Chinook Fishery, 2007: Post-season Report. Draft Report: October 30, 2007. Washington Department of Fish and Wildlife. Olympia, Washington. 80 pp. http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW). 2008a. A Multi-year Assessment of the Marine Areas 5 and 6 Selective Chinook Fishery: 2005-2007. Final Report Draft: March 14, 2008. Washington Department of Fish and Wildlife. Olympia, Washington. 177 pp . http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW). 2008b. A Multi-year Assessment of the Marine Areas 8-1 and 8-2 Selective Chinook Fishery: 2005-2007. Final Report Draft: February 25, 2008. Washington Department of Fish and Wildlife. Olympia, Washington. 149 pp. http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW). 2009a. Marine Areas 5 and 6 MarkSelective Recreational Chinook Fishery, Summer 2008: Post-season Report. Revised Draft Report: February 17, 2009. Washington Department of Fish and Wildlife. Olympia, Washington. 64 pp . http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW). 2009b. Marine Areas 9 and 10 Mark-Selective Recreational Chinook Fishery, July 16-August 15, 2008. Revised Draft Report: February 23, 2009. Washington Department of Fish and Wildlife. Olympia, Washington. 60 pp . http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.

Washington Department of Fish and Wildlife (WDFW). 2009c. Marine Areas 11 and 13 Mark-Selective Recreational Chinook Fishery, Summer 2008. Revised Draft Report: February 24, 2009. Washington Department of Fish and Wildlife. Olympia, Washington. 64 pp . http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW). 2009d. Marine Areas 8-1 and 8-2 Mark-Selective Recreational Chinook Fishery, November 1, 2007-April 302008. Revised Draft Report: February 20, 2009. Washington Department of Fish and Wildlife. Olympia, Washington. 62 pp. http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW). 2009e. Marine Area 7 MarkSelective Recreational Chinook Fishery, February 1-29, 2008. Revised Draft Report: February 20, 2009. Washington Department of Fish and Wildlife. Olympia, Washington. 47 pp . http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW). 2009f. Marine Area 9 MarkSelective Recreational Chinook Fishery, January 16 - April 15, 2008. Revised Draft Report: February 20, 2009. Washington Department of Fish and Wildlife. Olympia, Washington. 49 pp. http://wdfw.wa.gov/fish/salmon/suggested_reading.htm.
Washington Department of Fish and Wildlife (WDFW) and Northwest Indian Fisheries Commission (NWIFC). 2008. 2008-09 Co-managers' List of Agreed Fisheries. Olympia, Washington.

APPENDICES

Appendix A. Total estimators for the aerial-access sample design.

A. Estimating daily-, stratum-, and season-total fishery parameters

Total fishing effort (in angler trips and boat trips) and Chinook encounters (harvested and/or released, by mark-status group) were estimated for each sampled day i in each stratum j ($j=$ Monday-Thursday and Friday-Sunday strata, by week) by expanding dockside sample-frame totals to the non-sampled fraction of the fishery. First, dockside-frame totals ($y_{i j}^{(d s)}$) were computed for each parameter (effort, catch, or reported releases) by summing observations from sampled sites ($k=1$, 2, 3, or 4 [Port Townsend Ramp, Kingston Ramp, Edmonds Marina Dry Stack, and Everett Ramp]):

$$
\begin{equation*}
y_{i j}^{(d s)}=\sum_{k=1}^{4} y_{i j k} \tag{1}
\end{equation*}
$$

Given that all four dockside sample-frame sites were sampled for the entirety of every scheduled sample day, $y_{i j}^{(d s)}$ was taken as a census total with zero variance. Combining $y_{i j}^{(d s)}$ with an estimate of the fraction of area-wide effort encompassed by sampled sites (\bar{f}_{j}, described below) estimated from flight data, daily fishery-wide totals were estimated according to:
(2) $\quad \hat{Y}_{i j}=\frac{y_{i j}^{(d s)}}{\bar{f}_{j}}$, with variance

$$
\operatorname{var}\left(\hat{Y}_{i j}\right)=\left(y_{i j}^{(d s)}\right)^{2} \operatorname{var}\left(\frac{1}{\bar{f}_{j}}\right)
$$

For the weekend stratum (Fri-Sun), during which 100% daily coverage was achieved, stratum totals were taken as the sum of daily values estimated by Equation 2; the variance about stratum totals was taken as the sum of daily variances defined above, where $\operatorname{var}\left(\frac{1}{\bar{f}_{j}}\right)$ is estimated according to the parametric approach described below (Equation 5). Totals were estimated for the weekday (Mon-Thurs) stratum according to:

$$
\begin{align*}
& \hat{Y}_{j}=N_{j} \frac{\sum_{i=1}^{n_{j}} \hat{Y}_{i j}}{n_{j}} \text {, with variance } \tag{3}\\
& \operatorname{var}\left(\hat{Y}_{j}\right)=N_{j}\left(\frac{N_{j}-n_{j}}{n_{j}}\right) \frac{\sum_{i=1}^{n_{j}}\left(\hat{Y}_{i j}-\bar{Y}_{j}\right)^{2}}{n_{j}-1}+\frac{N_{j}}{n_{j}} \sum_{i=1}^{n_{j}} \operatorname{var}\left(\hat{Y}_{i j}\right)
\end{align*}
$$

where N_{j} and n_{j} are the total and sampled number of days in stratum j, respectively, and \bar{Y}_{j} is the mean daily total for sampled days in stratum j.

B. Estimating the sample fraction from aerial and dockside survey data

1. Conceptual overview

We estimated the fraction of area-wide effort encompassed by our dockside sample frame using a parametric statistical approach derived by Wan-Ying Chang, WDFW-Fish Program biometrician (unpublished memo). To do this, we viewed $f_{i j}$, the true fraction of area-wide effort encompassed by the dockside sample frame, as a fixed unknown parameter; we also considered $\hat{f}_{i j}$, the fraction estimated from any given aerial survey, to vary as a function of flight time according to a specified probability distribution model (described below), with mean equal to $f_{i j}$. We further assumed that $\hat{f}_{i j}$ was independent and identically distributed (i.i.d.) across all days within relevant blocks. Based on these assumptions, we constructed a sampling distribution for \bar{f}_{j} using data from days when both dockside and aerial surveys were conducted (by stratum j, if appropriate). Additionally, we derived an estimator for the variance of fishery totals (i.e., $\hat{Y}_{i j}$, Equation 3) that was consistent with \bar{f}_{j} 's sampling distribution.

There are two main advantages of this compared to other estimation approaches. First, depending on the distributional model chosen for \bar{f}_{j}, this parametric approach provides an analytical basis for computing the bias associated with $\hat{Y}_{i j}$ estimates. This information is needed to understand the quality of estimates, particularly given the potential for bias in ratio estimates in small sample-size cases (e.g., Cochran 1977). Second, using the parametric approach frees us from assuming that sampled and non-sampled angling parties have identical activity patterns within a given day. Given the difficulties associated with sampling the latter group, this assumption is more difficult to test than the i.i.d. assumption described above. Despite these advantages, additional analytical work (e.g. simulations) will likely be needed to fully understand the reliability of the present estimation method under different distributional assumptions.

2. Computing individual $f_{i j}$ estimates and defining stratum boundaries

On all days i within stratum j when both aerial and dockside surveys occurred, $f_{i j}$ was estimated according to

$$
\begin{equation*}
\hat{f}_{i j}=\frac{X_{i j}}{m_{i j}}, \tag{4}
\end{equation*}
$$

where $m_{i j}$ is the aerial boat count and $X_{i j}$ is the number of boats counted during the aerial survey that ended their trips at sampled access sites, and were fishing at the time of the survey, as discerned from reported trip start and end times. Once all $\hat{f}_{i j}$ values were available, we assessed whether stratum-specific (weekday and weekend; i.e., \bar{f}_{j}) or pooled (i.e., \bar{f}) sampling distributions were supported by the data collected during the season. Though our power was limited ($<10 \%$ where evaluated), a variety of statistical comparisons indicated that
\bar{f}_{j} s were relatively homogeneous across strata ($P>0.20$ for t, Mann-Whitney U, and median tests [Zar 1999]); thus, to maximize our sample size, we pooled data across weekend and weekday strata and constructed a single \bar{f}_{j} sampling distribution.
3. Estimating \bar{f}_{j} and $\operatorname{var}\left(\frac{1}{\bar{f}_{j}}\right)$

We estimated \bar{f}_{j} simply as the arithmetic mean of $\hat{f}_{i j}$ s computed for the season. To estimate the variance of its reciprocal, $\operatorname{var}\left(\frac{1}{\bar{f}_{j}}\right)$, we assumed that $\hat{f}_{i j}$ s are i.i.d. $\operatorname{Gamma}(\alpha, \beta)$ random variables; therefore $\bar{f}_{j} \sim \operatorname{Gamma}(n \alpha, n \beta)$, where α and β are the distribution's shape and scale parameters, respectively, and n is the number of flights that occurred during the season. The Gamma distribution was chosen for modeling \bar{f}_{j} for two reasons: 1) an expression for the bias in total estimates produced by Equation 2 can be easily derived under this distributional assumption, 2) this distribution can accommodate skewness or mimic a normal distribution, while simultaneously keeping a positive range. With sample α and β values obtained using the Shenton and Bowman "almost unbiased" estimators (Johnson et al. 1994), $\operatorname{var}\left(\frac{1}{\bar{f}_{j}}\right)$ was estimated as:

$$
\begin{equation*}
\operatorname{var}\left(\frac{1}{\bar{f}_{j}}\right)=\left[\beta^{2}\left(\alpha-\frac{1}{n}\right)^{2}(n \alpha-2)\right]^{-1} \tag{5}
\end{equation*}
$$

and α and β were estimated as:

$$
\begin{align*}
& \hat{\alpha}=\frac{n-3}{2 n R_{n}}+\frac{n+1}{6 n}-\frac{(n+1) R_{n}}{18 n}-\frac{\left(4 n^{2}-10 n+4\right) R_{n}^{2}}{135 n(n+3)} \tag{6}\\
& \hat{\beta}=\bar{f}_{j}\left[\frac{2 n R_{n}}{n-1}-\frac{2 n R_{n}^{2}}{2(n-1)}+\frac{4 n(n+1) R_{n}^{3}}{9(n-1)(n+3)}-\frac{2 n\left(7 n^{2}-60 n+7\right) R_{n}^{4}}{135(n-1)(n+3)(n+5)}\right]
\end{align*}
$$

where R_{n} is:

$$
\begin{equation*}
R_{n}=\log \left[\frac{\bar{f}_{j}}{\sqrt[n]{\prod_{i=1}^{n} \hat{f}_{i j}}}\right] \tag{7}
\end{equation*}
$$

Finally, given a Gamma distributional assumption, the relative bias ([expected observed]/expected) in total estimates obtained from Equation 2 was computed using:
(8) Bias $=\frac{1}{n \alpha-1} \cdot 100$

Given the data collected during the Area 9 winter 2008-09 fishery (Appendix D), we estimated α and β parameters for the November 1-30, 2008 period at 7.39 and 0.034, respectively, and we estimated α and β parameters for the January 16-April 15, 2009 period at 7.72 and 0.047 , respectively. Given the $n=8$ flights that occurred during the November 2008
period, and the $n=12$ flights that occurred during the January 16-April 15, 2009 period, the α estimates indicate that the estimates for each time period may suffer from a slight negative bias (2.3\% in November 2008 and 1.2% in January-April 2009).

C. Assumptions required for unbiased estimation of fishery parameters

Statistical Assumptions

1) The sample fraction estimated for any given day $\left(\hat{f}_{i j}\right)$ varies as a function of flight time following a Gamma probability distribution function with a mean equal to the true fraction;
2) All days within temporally defined strata have independent and identical probability distributions of $\hat{f}_{i j}$; this assumption applies to all days of the fishery if the mean sample fraction is estimated on a season-total level.

Behavioral and Sampling Assumptions

1) Salmon encounters (kept and released) per unit effort do not differ for anglers accessing the fishery from sampled and non-sampled access sites.
2) Party size (i.e., anglers/boat) does not differ for fishing vessels accessing the fishery from sampled and non-sampled sites.
3) The proportion of total recreational boating activity due to fishing is similar for parties accessing the fishery from sampled and non-sampled access sites.
4) Dockside samplers interview all boating parties active during flights that return to sampled sites, and aerial observers see all boats present in the area during flight surveys. Both sampling components are free from systematic errors in observation.
5) The proportion of total area-wide fishing effort returning to sampled sites (i.e., \bar{f}_{j}) does not differ between days when flights are and are not possible (i.e., "good" vs. "poor" weather days).

Appendix B. Mark-selective fishery impact estimation details.

Below are definitions and equations for all quantities used in estimating mark-selective fishery impacts from the combination of creel survey information, test fishery results, and (where applicable) charter and/or derby accounts. The estimation sequence builds from monthly ${ }^{6}$ estimators of encounters-by-class (i.e., the four size [legal, sublegal] \times mark-status [marked, unmarked] groups) to season-wide impact estimates. Where appropriate, the encounters (kept and released) for charter, derby, and/or other fishery components assessed via a complete census (i.e., totals without variance) are simply added to relevant total private-fleet estimates.

A. Total and Class-specific Encounters Estimation

The first step towards quantifying mark-selective fishery impacts by size/mark-status class is to estimate total Chinook encounters (\hat{E}_{i}, includes retained + released Chinook; See Monthly Encounters below) for each month of the fishery. Secondarily, encounters are apportioned to the appropriate size/mark-status group using encounters-composition data collected in the test fishery (See Testfishery Encounter Composition on following page).

Monthly Encounters

$\hat{E}_{i}=$ Total Chinook encounters for month i, which is estimated by combining creel estimates of legal-marked Chinook harvest ($\hat{K}_{L M i}$, defined on subsequent page) with a test fishery-based estimate of the proportion of the fishable Chinook population that is of legal size and marked ($\hat{p}_{L M i}$, defined on subsequent page). Given the potential for negative bias in \hat{E}_{i} if anglers release any of the legal-marked Chinook that they encounter, the \hat{E}_{i} estimator also includes a "correction" to account for this phenomenon (i.e., $1-p_{\mathrm{LM}-\mathrm{R}}$, where $p_{\mathrm{LM}-\mathrm{R}}$ is the estimated legalmarked Chinook release rate $)^{7} . \hat{E}_{i}$ and its variance are estimated as:

$$
\begin{align*}
& \hat{E}_{i}=\frac{\hat{K}_{L M}}{\left[\hat{p}_{L M}\left(1-p_{L M-R}\right)\right]} \tag{1}\\
& \operatorname{var}\left(\hat{E}_{i}\right)=\frac{1}{\left[\left(1-p_{L M-R}\right)^{2}\right]} *\left[\frac{\hat{K}_{L M i}{ }^{2}}{\hat{p}_{L M i}{ }^{2}} *\left(\frac{\operatorname{var}\left(\hat{K}_{L M i}\right)}{\hat{K}_{L M i}{ }^{2}}+\frac{\operatorname{var}\left(\hat{p}_{L M i}\right)}{\hat{p}_{L M i}{ }^{2}}\right)\right] \tag{2}
\end{align*}
$$

[^5]
Test-fishery Encounter Composition

$\hat{p}_{L M i}=$ the test-fishery estimate of the proportion of Chinook encounters that are legal-sized (L) and marked (M) during month i
$\hat{p}_{U_{i}}=$ the estimated proportion of encounters that are legal-sized (L) and unmarked (U)
$\hat{p}_{S M i}=$ the estimated proportion of encounters that are sublegal-sized (S) and unmarked (M)
$\hat{p}_{\omega_{i}}=$ the estimated proportion of encounters that are sublegal-sized (S) and unmarked (U)

For each $X Y$ combination (where $X=L$ or S and $Y=M$ or U), $\hat{p}_{X Y_{i}}$ and its variance is estimated as:

$$
\begin{align*}
& \hat{p}_{X Y i}=n_{X Y i} / n_{i}, \text { and } \tag{3}\\
& \operatorname{var}\left(\hat{p}_{X Y i}\right)=\left[\hat{p}_{X Y_{i}}\left(1-\hat{p}_{X Y_{i}}\right)\right] /\left(n_{i}-1\right), \tag{4}
\end{align*}
$$

where $n_{i}=$ the total number of fish encountered by test boats during month i.

Encounters by Size/Mark-status Class

$\hat{E}_{L M i}=$ estimated legal (L), marked (M) encounters during month i
$\hat{E}_{L U i}=$ estimated legal (L), unmarked (U) encounters during month i
$\hat{E}_{S M i}=$ estimated sublegal (S), marked (M) encounters during month i
$\hat{E}_{S U i}=$ estimated sublegal (S), marked (U) encounters during month i
For each $X Y$ combination (where $X=L$ or S and $Y=M$ or U) excluding $L M, \hat{E}_{X Y_{i}}$ and an estimate of its variance are obtained from:

$$
\begin{align*}
& \hat{E}_{X Y_{i}}=\hat{E}_{i} * \hat{p}_{X Y_{i}} \tag{5}\\
& \operatorname{var}\left(\hat{E}_{X Y_{i}}\right)=\operatorname{var}\left(\hat{E}_{i}\right) * \hat{p}_{X Y_{i}}{ }^{2}+\hat{E}_{i}{ }^{2} * \operatorname{var}\left(\hat{p}_{X Y_{i}}\right)-\operatorname{var}\left(\hat{E}_{i}\right) * \operatorname{var}\left(\hat{p}_{X Y_{i}}\right) \tag{6}
\end{align*}
$$

B. Estimating Retained and Released Numbers by Size/Mark-status Class

Before total mortality can be estimated for each class (LM, SM, LU, SU), class-specific encounters must be separated into retention and release categories. First, given that harvest is estimated only to mark-status class for creel survey purposes (i.e., Murthy estimates or otherwise), estimates of marked and unmarked Chinook retention must be assigned to size classes (See Apportioned Estimates of Retention to Size Classes on subsequent page); this is done using mark-status-specific size composition data from dockside sampling (See Dockside Observations for Apportioning Retained Catch to Class on subsequent page). Subsequently, size/mark-status group-specific releases are estimated as the difference between class-specific encounters and retention (See Estimating Release Numbers by Class on subsequent page).

Dockside Observations for Apportioning Retained Catch to Class

$\hat{d}_{L M K}=$ the estimated proportion of retained (kept, K), marked (M) Chinook salmon that were legal (L); based on season-wide ${ }^{8}$ dockside observations of marked Chinook (as is $\hat{d}_{\text {SMK }}$)
$\hat{d}_{S M K}=$ the estimated proportion of retained (kept, K), marked (M) Chinook that were sublegal (S)
The proportion of retained, marked fish in size class $X(X=L$ or $S)$ and its variance are estimated as:

$$
\begin{align*}
& \hat{d}_{X M K}=n_{X M K} / n_{M K} \tag{8}\\
& \operatorname{var}\left(\hat{d}_{X M K}\right)=\left[\hat{d}_{X M K} *\left(1-\hat{d}_{X M K}\right)\right] /\left(n_{M K}-1\right), \tag{9}
\end{align*}
$$

where n_{MK} and n_{XXK} are season-wide total dockside counts of marked fish and the subset of marked fish in size-class X, respectively.
$\hat{d}_{L U K}=$ the estimated proportion of retained (kept, K), unmarked (U) Chinook salmon that are legal (L); estimated from season-wide dockside observations of unmarked Chinook (as is $\hat{d}_{\text {SUK }}$) $\hat{d}_{S U K}=$ the estimated proportion of retained (kept, K), unmarked (U) Chinook that are sublegal (S)

The proportions of retained, unmarked fish belonging to legal and sublegal size classes and their respective variances are estimated as above (Eqns. 8 and 9) but using season-wide dockside observations on unmarked (U), not marked Chinook salmon.

Apportioned Estimates of Retention to Size Classes

$\hat{K}_{L M i}=$ the estimated number of legal (L), marked (M) Chinook kept in month i
$\hat{K}_{L U_{i}}=$ the estimated number of legal (L), unmarked (U) Chinook kept in month i
The number of kept, marked encounters, marked fish in size class X (L or S) and its variance is estimated as:

$$
\begin{align*}
& \hat{K}_{X M i}=\hat{d}_{X M K} * \hat{N}_{M K i} \tag{10}\\
& \operatorname{var}\left(\hat{K}_{X M i}\right)=\operatorname{var}\left(\hat{N}_{M K i}\right) * \hat{d}_{X M K}{ }^{2}+\hat{N}_{M K i}{ }^{2} * \operatorname{var}\left(\hat{d}_{X M K}\right)-\operatorname{var}\left(\hat{N}_{M K i}\right) * \operatorname{var}\left(\hat{d}_{X M K}\right) \tag{11}
\end{align*}
$$

where $\hat{d}_{X M K}$ and its variance are from 7 and 8 above and $\hat{N}_{M K}$ is the survey estimate of retained marked fish for month i defined in Eqn. 1.
$\hat{K}_{S M i}=$ estimated number of sublegal (S), marked (M) Chinook kept in month i
$\hat{K}_{S U i}=$ estimated number of sublegal (S), unmarked (U) Chinook kept in month i

[^6]The number of retained, unmarked fish belonging to legal and sublegal size classes is estimated according to Eqns. 10 and 11 above but using unmarked fish proportions and monthly retention estimates.

Estimating Release Numbers by Class

$\hat{R}_{L M i}=$ the estimated number of legal (L), marked (M) Chinook released in month i
$\hat{R}_{L U i}=$ the estimated number of legal (L), unmarked (U) Chinook released in month i
$\hat{R}_{S M}=$ the estimated number of sublegal (S), marked (M) Chinook released in month i
$\hat{R}_{S U_{i}}=$ the estimated number of sublegal (S), unmarked (U) Chinook released in month i
For each size/mark-status class (i.e., $X Y$ combination $[X=L$ or S and $Y=M$ or $U]$), the number of fish encountered and released is estimated as the difference between total size/mark-status class encounters ($\hat{E}_{X Y_{i}}$) and retention ($\hat{K}_{X Y_{i}}$) during month i. The estimator and its variance are:

$$
\begin{align*}
& \hat{R}_{X Y_{i}}=\hat{E}_{X Y_{i}}-\hat{K}_{X Y_{i}} \tag{12}\\
& \operatorname{var}\left(\hat{R}_{X Y_{i}}\right)=\operatorname{var}\left(\hat{E}_{X Y_{i}}\right)+\operatorname{var}\left(\hat{K}_{X Y_{i}}\right) \tag{13}
\end{align*}
$$

C. Estimating Total (and Class-specific) Monthly and Season-wide Mortality

The application of assumed mortality rates (See Assumed Mortality Rates for Retained and Released Chinook below) to class-specific estimates of total retention and releases constitutes the final step in quantifying mark-selective fishery impacts.

Assumed Mortality Rates for Retained and Released Chinook

$m_{K}=$ retention mortality rate, 100% for all retained Chinook (reincarnation is rare among fishes)
$s f m_{L}=$ release mortality rate for legal (L) Chinook, assumed to be a constant 15%
$s f m_{S}=$ release mortality rate for sublegal (S) Chinook, assumed to be a constant 20%

Retention-mortality Estimates

$\hat{M}_{L M K}=$ estimated mortality due to legal $(L), \operatorname{marked}(M)$ Chinook harvest in month $i\left(=\hat{K}_{L M i}\right)$.
$\hat{M}_{L U K_{i}}=$ estimated mortality due to harvest of legal (L), unmarked (U) Chinook in month $i\left(=\hat{K}_{L U_{i}}\right)$.
$\hat{M}_{S M K_{i}}=$ estimated mortality due to harvest of sublegal (S), marked (M) Chinook in month $i\left(=\hat{K}_{S M i}\right)$.
$\hat{M}_{S U K_{i}}=$ estimated mortality due to harvest of sublegal (S), marked (M) Chinook in month $i\left(=\hat{K}_{S U i}\right)$.

Release-mortality Estimates

$\hat{M}_{L M R i}=$ estimated post-release mortality for legal (L), marked (M) Chinook in month i
$\hat{M}_{\text {LUR } i}=$ estimated post-release mortality for legal (L), unmarked (U) Chinook in month i
$\hat{M}_{S M R_{i}}=$ estimated post-release mortality for sublegal (S), marked (M) Chinook in month i
$\hat{M}_{S U R i}=$ estimated post-release mortality for sublegal (S), unmarked (U) Chinook in month i
All class-specific ($X Y$ [$X=L$ or $S, Y=M$ or $U]$) release mortality estimates are obtained from:

$$
\begin{align*}
& \hat{M}_{X Y R_{i}}=\hat{R}_{X Y i} * s f m_{Y} \tag{14}\\
& \operatorname{var}\left(\hat{M}_{X Y R_{i}}\right)=\operatorname{var}\left(\hat{R}_{X Y i}\right) * s f m_{Y}{ }^{2} \tag{15}
\end{align*}
$$

Season-wide Total and Class-specific Mortality Estimation

$\hat{M}_{\text {total }}=$ total season-wide Chinook salmon mortality; this parameter and its variance $\left[\operatorname{var}\left(\hat{M}_{\text {total }}\right)\right]$ are computed as the sum of all monthly retention and release mortality estimates [i.e., $\left.\hat{M}_{\text {total }}=\sum_{i=1}^{\max i}\left(\hat{M}_{X Y K i}+\hat{M}_{X Y R i}\right)\right]$ and variances $\left[\operatorname{var}\left(\hat{M}_{\text {total }}\right)=\sum_{i=1}^{\max i}\left[\operatorname{var}\left(\hat{M}_{X Y K_{i}}\right)+\operatorname{var}\left(\hat{M}_{X Y R_{i}}\right)\right]\right]$, respectively, for all four size/mark-status groups ($X=L$ or $S, Y=M$ or U). Season total estimates for subgroups of interest (e.g., unmarked, sublegal Chinook, $\hat{M}_{S U-\text { total }}$) are obtained by summing monthly estimates (and variances) across the season for just that group.

D. Characterizing Precision of Estimates

The precision of estimates generated from creel surveys and the preceding fishery impact estimation scheme is characterized using estimates of a parameter's standard error (SE), coefficient of variation ($C V$ or relative standard error), and approximate 95% confidence interval. For any parameter estimate $\hat{\theta}$ (e.g., $\hat{M}_{\text {total }}, \hat{K}_{L M i}, \hat{E}_{i}$, etc.), these metrics are estimated using:

$$
\begin{align*}
& S E(\hat{\theta})=\sqrt{\operatorname{var}(\hat{\theta})} \tag{16}\\
& C V(\hat{\theta})=[\operatorname{SE}(\hat{\theta}) / \hat{\theta}] * 100 \tag{17}\\
& C I=\hat{\theta} \pm 1.96 * \operatorname{SE}(\hat{\theta}) \tag{18}
\end{align*}
$$

Figure A1. (On following page) Graphical representation of the approach used to estimate monthly encounters and mortalities by size/mark-status category in mark-selective Chinook fisheries. Boxes depict abundance estimates (encounters, mortalities) whereas the mathematical operations depicted on intermediate connector lines are estimator formulae yielding quantities found in subsequent boxes (moving from left to right). Parameter definitions, complete formulae, and variances are defined in the preceding pages. For short-duration fisheries (~ 1 month or less), monthly and season-total values are equivalent; for all others, season-total impacts are equivalent to the sum of monthly impact estimates (and variances).

Appendix C. Monthly sample rates (Total retained Chinook sampled ${ }^{1 /}$ / Estimated retained Chinook) in the winter 2008-09 Area 9 mark-selective Chinook fishery, November 1-30, 2008 and January 16-April 15, 2009.

Time period			Estimated Retained Chinook			Number Retained Chinook Sampled ${ }^{1 /}$			Sample Rate
Month	Stat. Weeks	Dates	Marked	Unmarked	Total	Marked	Unmarked	Total	
November	44-48	Nov 1 - Nov 30	330	5	335	88	0	88	26.2\%
January	3-5	Jan 16 - Feb 1	161	2	163	73	1	74	45.4\%
February	6-9	Feb 2 - Mar 1	322	0	322	122	0	122	37.9\%
March	10-13	Mar 2 - Mar 29	39	7	46	13	1	14	30.2\%
April	14-16	Mar 30-Apr 15	33	0	33	3	0	3	9.1\%
Season Total			885	14	899	299	2	301	33.4\%

${ }^{1 /}$ Number of retained Chinook sampled includes all retained Chinook inspected for CWT's, from all sites sampled during the winter 2008-09 Area 9 fishery (i.e., the four sample-frame sites included in the creel estimates, plus the fish sampled as part of baseline sampling in the Area).

Appendix D. Summary of aerial overflight and dockside data used to estimate the fraction of Area 9 effort captured in the four-site sample frame during the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery. See Appendix A for computational details and notation.

Survey Date	Stratum	Aerial Survey Details			Dockside Sampling Details			Sample Fraction, $f_{i j}$		
		Start Time	End Time	$\begin{gathered} \text { Total } \\ \text { Boats, } m_{i j} \end{gathered}$	Total Boats, $\Sigma y_{i j}$	Fishing Boats	Active Boats, $X_{i j}$			
01-Nov	Weekend	10:25	10:53	211	95	77	82	0.389		
05-Nov	Weekday	10:38	11:09	17	16	7	10	0.588		
09-Nov	Weekend	10:32	11:07	51	32	15	21	0.412		
14-Nov	Friday	10:24	10:48	54	25	13	15	0.278		
15-Nov	Weekend	10:35	11:03	94	52	29	35	0.372		
18-Nov	Weekday	11:48	12:26	5	9	2	3	0.600		
21-Nov	Friday	10:35	11:08	2	0	0	0	0.000		
22-Nov	Weekend	10:32	11:02	71	37	26	29	0.408		
November Stratum Summary Statistics:		$\begin{array}{r} \text { Mean } \\ \text { SD } \\ \text { CV }(\%) \\ \hline \end{array}$		63	33	21	24	0.381		
		8.01	4.85	5.07	4.98	0.07				
		12.7\%	14.6\%	24.0\%	20.4\%	17.5\%				
24-Jan	Weekend			10:42	11:00	34	25	19	20	0.588
01-Feb	Weekend			10:44	11:09	40	25	19	19	0.475
14-Feb	Weekend	10:27	10:45	166	99	75	77	0.464		
19-Feb	Weekday	11:03	11:21	11	8	6	6	0.545		
21-Feb	Weekend	10:42	11:13	102	40	26	28	0.275		
27-Feb	Friday	10:42	10:57	25	12	7	8	0.320		
13-Mar	Friday	10:36	10:54	16	20	13	13	0.813		
17-Mar	Weekday	11:13	11:28	3	2	1	1	0.333		
21-Mar	Weekend	10:43	11:10	67	49	37	39	0.582		
04-Apr	Weekend	10:33	10:48	58	33	19	19	0.328		
10-Apr	Friday	10:40	10:56	28	16	10	10	0.357		
11-Apr	Weekend	10:40	11:03	29	16	14	14	0.483		
Jan-April Stratum Summary Statistics:				48	29	21	21	0.464		
		6.34	4.62	4.17	4.24	0.04				
		13.1\%	16.1\%	20.3\%	20.0\%	9.6\%				

Appendix E. Age composition of retained (dockside samples) and encountered (test fishery samples) Chinook salmon, during the winter 2008-09 mark-selective Chinook fishery in Area 9 (November 1-30, 2008 and January 16-April 15, 2009).

| | Mark-
 status
 group | | $\mathbf{1 . 1}$ | $\mathbf{2 . 1}$ | $\mathbf{2 . 2}$ | $\mathbf{3 . 1}$ | $\mathbf{3 . 2}$ | $\mathbf{4 . 1}$ | $\mathbf{4 . 2}$ | $\mathbf{5 . 1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Total | Age Composition ${ }^{\mathbf{2 /}}$ |
| :--- |
| Source |

${ }^{1 /} \mathrm{AD}=$ Adipose fin-clipped (marked); $\mathrm{UM}=$ Adipose fin in tact (unmarked).
${ }^{2 /}$ Gilbert-Rich age notation, "Total Age". "Age at outmigration", inclusive of time spent in incubation.
${ }^{3 /}$ In addition, two retained unmarked Chinook that were sampled during dockside interviews (not shown in the above table) were determined to be age 4.1.

Appendix F. Coded-wire tag recoveries from Chinook salmon sampled during dockside angler interviews in the winter 2008-09 (November 1-30, 2008 and January 16-April 15, 2009) Area 9 mark-selective Chinook fishery.

Recovery Date	Tag Code	BY	ReleaseSite	RearingHatchery	Release Agency	DIT Code(s)	$\begin{gathered} \text { FL } \\ (\mathrm{cm}) \end{gathered}$	Label
11/30/2008	633372	2005	BIG SOOS CR 09.0072		WDFW	633371	70	54630
11/24/2008	632979	2005	CHAMBERS CR 12.0007	GARRISON HATCHERY	WDFW		56	54629
02/21/2009	633472	2005	CHAMBERS CR 12.0007	LAKEWOOD HATCHERY	WDFW		71	54967
11/01/2008	633286	2005	CLEAR CR 11.0013C	NISQUALLY HATCHERY	NISQ	210681	55	51391
04/05/2009	210688	2006	COWSKULL ACCLIM POND	COWSKULL ACCLIM POND	PUYA		55	57717
02/04/2009	633382	2005	FINCH CR 16.0222	HOODSPORT HATCHERY	WDFW		72	57042
01/17/2009	633369	2005	FRIDAY CR 03.0017	SAMISH HATCHERY	WDFW	633368	59	49534
02/21/2009	633369	2005	FRIDAY CR 03.0017	SAMISH HATCHERY	WDFW	633368	70	54925
02/14/2009	633467	2005	GREEN R 09.0001	ICY CR HATCHERY	WDFW		64	57046
02/06/2009	633467	2005	GREEN R 09.0001	ICY CR HATCHERY	WDFW		61	54924
01/18/2009	633467	2005	GREEN R 09.0001	ICY CR HATCHERY	WDFW		68	57715
11/01/2008	633285	2005	GROVERS CR 15.0299	GROVERS CR HATCHERY	SUQ	210682	67	57713
02/06/2009	633285	2005	GROVERS CR 15.0299	GROVERS CR HATCHERY	SUQ	210682	67	57043
11/01/2008	633285	2005	GROVERS CR 15.0299	GROVERS CR HATCHERY	SUQ	210682	60	57028
02/14/2009	633366	2005	PURDY CR 16.0005	GEORGE ADAMS HATCHRY	WDFW	633365	77	50662
11/01/2008	633366	2005	PURDY CR 16.0005	GEORGE ADAMS HATCHRY	WDFW	633365	72	54628
02/13/2009	633875	2006	PURDY CR 16.0005	GEORGE ADAMS HATCHRY	WDFW	633876	54	49670
02/14/2009	210677	2005	SKAGIT R 03.0176		WDFW		73	50663
02/28/2009	052577	2006	SPRING CR 29.0159	SPRING CR NFH	FWS	053484	59	50264
01/18/2009	052577	2006	SPRING CR 29.0159	SPRING CR NFH	FWS	053484	54	54922
04/03/2009	633375	2005	VOIGHT CR 10.0414	VOIGHTS CR HATCHERY	WDFW		71	57215
02/14/2009	210684	2005	WHITEHORSE SPRINGS	WHITEHORSE POND	COOP		81	50661

Appendix G. Fishery-total estimates of retained and released salmon (Chinook and other species) catch for the winter 2008-09 (November 1-30, 2008 and January 16April 15, 2009) Area 9 mark-selective Chinook fishery. Displayed Chinook harvest values are equivalent to those displayed in Table 3. Whereas the Chinook release estimates displayed in Table 3 are based on the Conrad and McHugh (2008) method, values displayed here are based solely on angler-reported data. Values may not add exactly due to rounding error. $\mathrm{AD}=$ marked (i.e., adipose-clipped), $\mathrm{UM}=$ unmarked, $\mathrm{UNK}=$ unknown mark status.

Stat Week	Est. Effort		Est. Retained Catch							Est. Releases									
	Boats	Anglers	Chinook			Coho			Chum	Chinook				Coho				Chum	Unk. Salmon
			Mark	Unmark	Total	Mark	Unmark	Total		Mark	Unmark	Unk.	Total	Mark	Unmark	Unk.	Total		
44	294	614	61	0	61	2	0	2	0	512	330	1,335	2,177	7	0	56	63	0	697
45	138	265	10	0	10	0	0	0	0	34	17	294	345	19	7	12	39	0	163
46	265	515	58	0	58	0	0	0	0	197	85	432	714	5	5	44	53	0	289
47	221	420	107	0	107	0	0	0	0	223	107	350	680	5	2	51	58	0	468
48	510	932	95	5	100	0	0	0	0	369	175	1,260	1,804	15	7	75	97	0	367
3	214	423	81	2	83	0	0	0	0	101	60	79	239	7	0	0	7	0	5
4	111	231	33	0	33	0	0	0	0	27	9	49	85	0	0	2	2	0	0
5	153	285	47	0	47	4	0	4	0	44	5	11	60	9	0	0	9	0	16
6	301	574	91	0	91	0	0	0	0	38	45	117	200	3	2	13	18	0	17
7	401	876	108	0	108	0	0	0	0	68	21	35	123	25	4	7	36	0	0
8	229	471	75	0	75	0	0	0	0	55	31	22	107	0	2	4	7	2	20
9	138	271	48	0	48	0	0	0	0	37	31	33	100	0	2	2	4	0	24
10	103	190	24	0	24	0	0	0	0	63	28	39	131	0	7	4	11	0	4
11	63	109	2	0	2	0	0	0	0	24	9	28	61	4	7	4	15	0	0
12	138	280	13	7	20	0	0	0	0	50	9	24	83	2	0	0	2	0	7
13	39	63	0	0	0	0	0	0	0	37	4	7	48	4	4	0	9	0	11
14	214	389	22	0	22	0	0	0	0	61	48	35	144	4	7	0	11	0	8
15	87	155	11	0	11	0	0	0	0	41	11	28	81	0	0	9	9	0	0
16	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	3,622	7,064	885	14	899	7	0	7	0	1,983	1,023	4,177	7,183	109	57	284	450	2	2,094
Grand Total Summary Statistics:																			
Var	18,437	68,093	3,131	14	3,145	10		10		26,360	8,044	131,734	166,138	482	47	102	973	0.001	53,719
SE	136	261	56	4	56	3		3		162	90	363	408	22	7	10	31	0.031	232
CV	3.7\%	3.7\%	6.3\%	27.0\%	6.2\%	46.8\%		46.8\%		8.2\%	8.8\%	8.7\%	5.7\%	20.0\%	12.0\%	3.6\%	6.9\%	1.5\%	11.1\%
$\begin{gathered} 95 \% \\ \mathrm{CI} \end{gathered}$	$\begin{gathered} 3,356- \\ 3,888 \end{gathered}$	$\begin{aligned} & 6,553- \\ & 7,575 \end{aligned}$	$\begin{gathered} 776- \\ 995 \end{gathered}$	6-21	$\begin{array}{r} 789- \\ 1,009 \\ \hline \end{array}$	2-12		1-13		$\begin{aligned} & 1,665- \\ & 2,301 \end{aligned}$	$\begin{gathered} 847- \\ 1,199 \end{gathered}$	$\begin{aligned} & 3,466- \\ & 4,888 \\ & \hline \end{aligned}$	$\begin{aligned} & 6,384- \\ & 7,982 \end{aligned}$	6-124	44-70	$\begin{aligned} & 264- \\ & 303 \\ & \hline \end{aligned}$	$\begin{gathered} 389- \\ 511 \\ \hline \end{gathered}$	2-2	$\begin{aligned} & 1,639- \\ & 2,548 \end{aligned}$

Appendix H. Season-total estimates of Chinook encounters by size/mark status, and total estimates of angler effort, summarized for all seasons to date of the Area 9 winter mark-selective Chinook fishery.

Area	Season Dates	Effort (Angler Trips)	Retained Chinook				Released Chinook				Total Encounters
			LM	LU	SM	SU	LM	LU	SM	SU	
9	January 16 -April 15, 2008	6,887	1,333	3	72	0	195	304	1,288	375	3,570
9	Nov 1-30, 2008 and January 16 - April 15, 2009	7,064	871	14	14	0	130	158	3,520	2,837	7,545

[^0]: ${ }^{1}$ Though the necessary tissue samples have been collected, DNA-based estimates of stock composition are presently unavailable for Puget Sound/Strait of Juan de Fuca mark-selective fisheries. In the present report, CWT-based (unexpanded) estimates of the stock composition of marked Chinook harvest are provided.

[^1]: ${ }^{2}$ The regulations specific to the winter 2008-09 Area 9 mark-selective fishery allowed for the retention of up to two legal-sized (≥ 22 inches [56 cm]) marked Chinook salmon per day and required the immediate release of all unmarked or sublegal Chinook. Additionally, anglers were: i) required to use single-point, barbless hooks while fishing for salmon, $i i$) held to a combined (all salmon species) two-fish daily limit during the Area 9 markselective fishery, and $i i i$) held to a handling rule that prevented them from bringing unmarked and/or sublegal Chinook aboard their vessels.

[^2]: ${ }^{3}$ Though the necessary tissue samples have been collected, DNA-based estimates of stock composition are presently unavailable for Puget Sound/Strait of Juan de Fuca mark-selective fisheries. In the present report, CWT-based (unexpanded) estimates of the stock composition of marked Chinook harvest are provided.

[^3]: ${ }^{4}$ In a recent evaluation of bias in mark-selective fishery parameter estimates, Conrad and McHugh (2008) concluded that recall errors likely cause bias in interview-based estimates of total salmon releases. Thus, although estimates of total salmon releases based solely on angler-reported data were generated for this report (Appendix G), we focus exclusively on bias-corrected "Method 2" estimates of Chinook encounters (and releases) in our review of the Area 9 fishery.

[^4]: ${ }^{5}$ For all unmarked-DIT encounters and mortalities calculations, we relied on the unmarked-to-marked abundance ratio (λ) estimated for DIT groups at the time of juvenile release.

[^5]: ${ }^{6}$ Note: For fisheries characterized by short-duration seasons (i.e., ~ 1 month), the "monthly" estimators described in this appendix are synonymous season-total estimators.
 ${ }^{7}$ Equations 1 and 2 were modified based on a recent state-tribal evaluation of sources of bias in estimates of total Chinook encounters in mark-selective fisheries. Based on a review of relevant data, the current operational $p_{\text {LM-R }}$ (combined intentional and unintentional LM Chinook release rate) applied in the bias-corrected \hat{E}_{i} estimator is 0.13 . See Conrad and McHugh (2008) for further detail.

[^6]: ${ }^{8}$ Due to small sample sizes for observed, harvested Chinook-particularly for sublegal and/or unmarked classes-dockside length data are pooled across the season to estimate $\hat{d}_{X Y K}$.

