1 2 3 4 5 6 7 8 9	Fine-scale population structure of rainbow trout (<i>Oncorhynchus mykiss</i>) in the Spokane River drainage in relation to hatchery stocking and barriers
10	
11	
12	
12	Mannen D. Small ¹ e, Lease C. Malallan ² , Least Least man $1,3$, Least Gar. Man. Densen ¹
13	Maureen P. Small's, Jason G. McLellan ⁻ , Janet Loxterman ^{*,*} , Jennifer Von Bargen [*] ,
14	Alice Frye ¹ , and Cherril Bowman ¹
15	¹ Washington Department of Fish and Wildlife, Conservation Biology Unit, Genetics Lab
16	² Washington Department of Fish and Wildlife, Spokane Office
17	³ Biology Department, Idaho State University, Pocatello, ID
18	
19	§ corresponding author, 600 Capitol Way N, Olympia, WA 98501, phone 360-902-2682,
20	fax 360-902-2943, email: smallmps@dfw.wa.gov
21	² WDFW, 2315 N Discovery Place, Spokane Valley, WA 99216, email:
22	mcleljgm@dfw.wa.gov
23	³ Biological Sciences, ISU, Pocatello, ID 83209, email: <u>loxtjane@isu.edu</u>
24	Jennifer Von Bargen email: vonbajfv@dfw.wa.gov
25	Alice Frye email: <u>pichaaep@dfw.wa.gov</u>
26	Cherril Bowman email: <u>bowmacmb@dfw.wa.gov</u>

27 Abstract: We examined population structure in rainbow trout (*Oncorhynchus mykiss*) 28 collected from 20 tributaries and three mainstems in the greater Spokane River drainage 29 using 13 microsatellite loci. Populations displayed some excess homozygosity and 30 linkage disequilibrium, which was more pronounced in upper tributary collections and 31 likely the result of small effective population sizes or structuring within tributaries. In 32 general, population structure followed geographic structure: collections from creeks 33 within sub-drainages were most closely related and collections from different tributaries 34 were genetically distinct. Comparisons to cutthroat trout (O. clarki) indicated little to no 35 introgression. Comparisons to steelhead, coastal, and inland rainbow trout from 36 hatcheries suggested introgression by hatchery fish into some wild populations. 37 Introgression was suspected in populations from stocked tributaries and where the 38 tributary lacked barriers to escaped hatchery fish. Populations from tributaries above 39 barriers that had not been stocked were genetically distinct from hatchery fish and 40 appeared to be native inland redband rainbow trout.

41 Introduction: Effective fisheries management is based upon an understanding of 42 population structure, usually a complex reflection of historical processes, geography and 43 life history (Small et al. 1998; McCusker et al. 2000; Spidle et al. 2003; Spruell et al. 44 2003). Historically, tributaries in the Pacific Northwest were recolonized following 45 glacial retreat, with population structure reflecting common founders (Small et al. 1998, 46 McCusker *et al.* 2000). Since salmonids home to their natal stream for breeding, genetic 47 structure is often organized upon geographic structure of drainages (McCusker et al. 48 2000, Taylor et al. 2003). As some amount of straying naturally occurs within drainages 49 and to a lesser extent among drainages within the same region, population structure 50 generally follows a hierarchy of regional structure with populations more closely related 51 in nearby drainages (Hansen and Mensberg 1998; Spruell et al. 2003; Taylor et al. 2003). 52 In addition to natural movement, fisheries managers move trout among drainages and 53 among regions, potentially altering genetic structure. Hatchery introductions have mixed 54 impacts upon wild populations: salmonids are regionally adapted (Taylor 1991) and 55 hatchery fish, often of non-local origin, may lack characteristics allowing them to 56 succeed in regions different from their origins or to succeed under natural conditions 57 (Currens et al. 1990; Hindar et al. 1991; Williams et al. 1996; Reisenbichler and Rubin 58 1999; Hansen et al. 2001; Weber and Fausch 2003; McGinnity et al. 2004). 59 Anthropogenic barriers to fish movement also impact population structure (Neraas and 60 Spruell 2001; Van Houdt et al. 2005). Dams, culverts or periodic loss of flow within a 61 waterway from land-use practices that prevent fish from moving throughout drainages 62 may affect gene flow and biodiversity patterns (Taylor et al. 2003), and lead to smaller 63 effective population sizes. Natural barriers such as historic dry channels or waterfalls

arising from tectonic processes similarly influence fish movement (Currens *et al.* 1990),
but might leave a different genetic signature where barriers predated humans. Salmonid
management is based partly upon understanding the relative roles of natural and
anthropogenic influences on salmonid ecology as reflected in population genetic
structure.

69

70 In this study, population genetic structure was investigated in rainbow trout occupying 71 tributaries of the Spokane and Little Spokane rivers in eastern Washington State (Figure 72 1) using microsatellite DNA. We tested the hypothesis that hatchery fish planted in the 73 system over the past century had displaced or introgressed into native populations and 74 examined the influence of natural and anthropogenic barriers on putative native 75 population structure. Native inland "redband" rainbow trout (Oncorhynchus mykiss 76 gairdneri), both anadromous (steelhead) and resident forms, were once abundant. Dam 77 construction in the early 1900s on the Spokane River (Figure 1) eliminated the 78 anadromous form but native resident populations may still persist in unstocked tributaries 79 isolated by barriers. To mitigate for dam construction, hatchery rainbow trout and 80 hatchery cutthroat trout (O. clarki) were stocked throughout the drainage starting in the 81 early 1900s. Hatchery rainbow trout were primarily coastal rainbow trout (O. mykiss 82 *irideus*) but also included some inland redband rainbow trout, (inland rainbow trout are 83 distinguished morphologically from coastal rainbow trout by a red lateral stripe and 84 primitive taxonomic structures (Currens et al. 1990), genetically by differences at 85 allozyme loci (Currens 1997) and ecologically by adaptations to inland environments 86 (Currens 1997)). Stocking efforts varied by tributary and were based upon availability

of lakes, habitat quality and potential for recreational opportunities. We found that
hatchery fish had introgressed into native populations in tributaries with hatchery
stocking and in unstocked tributaries below barriers that were exposed to escaped
hatchery fish. Unstocked tributaries above barriers appeared to be native inland redband
rainbow trout. Thus, although barriers disrupted connectivity among rainbow trout
populations, barriers also served to protect native diversity.

93

94 <u>Materials and methods:</u>

95 Area geography

96 The Spokane River system is a low gradient drainage underlain by a large aquifer 97 maintained by snow-melt and rainwater. Although only upper headwaters were within 98 Pleistocene glacial margins, glacial Lake Spokane covered part of the drainage and part 99 of the area was scoured during the Great Spokane flood around 18,000 years before 100 present (USGS 2006). In addition to waterfalls from tectonic and glacial activity, and 101 man-made barriers (culverts, dams, high sediment load), movement of fish among 102 tributaries is restricted by availability of water since in many creeks some portion is dry 103 for at least part of the year. Although springs throughout the drainage provide high 104 quality water and thermal refugia, water availability and quality in some tributaries has 105 declined dramatically over the past century as riparian plants were removed and road 106 building, mining, timber harvest and agriculture diverted groundwater and increased 107 water temperature, sedimentation and pollution (Bruce Kinkead, tribal biologist, Coeur 108 d'Alene Tribe, pers. comm.).

110 Samples and area history

111 Samples of adult fish fin tissue were obtained non-lethally by backpack electrofishing in 112 a stratified random sampling design (10 fish per 100 m blocked section). Rainbow trout 113 samples were collected 2001 through 2004 from 21 tributaries and the mainstem of the 114 Spokane (356 fish) and Little Spokane (940 fish) rivers and Hangman Creek (206 115 rainbow and 108 cutthroat; Figure 1, Table 1). In most tributaries with barriers, samples 116 were collected above barriers (Table 1). Some barriers were complete and one-way (eg. 117 Spokane Falls), others were incomplete (eg. culvert surmountable under high flow) and 118 others were absent under rare conditions (eg. 5.5 km of dry creek bed in each of Coulee 119 and Deep creeks flows only in years of high snowfall). In Dartford Cr., samples were 120 gathered above and below a culvert about 200 m from the creek mouth. 121 122 Historically, inland resident (redband rainbow) and anadromous (steelhead) rainbow trout 123 were throughout the system and cutthroat trout were only above Spokane Falls (Behnke 124 1992). Hatchery rainbow trout have been planted since the early 1900's. Most fish 125 originated at the Spokane Hatchery (Figure 1, Table 2), which maintains a coastal 126 rainbow trout broodstock from McCloud River, CA (Crawford 1979; Busack and Gall 127 1980; Nielsen et al. 1999; 96 fish sample included). Other hatchery rainbow trout 128 planted included Trout Lodge Inc. Hatchery (private hatchery, broodstock origin 129 unknown, 49 fish sample), and Phalon Lake Conservation stock (Phalon Lake), an inland 130 redband rainbow stock from Kettle River 100 km north of Spokane River. The Phalon 131 Lake stock was reconstructed in 2002 and we included samples from 2001 and 2002 (200 132 fish). Some Trout Lodge fish were planted by landowners and some escaped from ponds

133 in upper Deep Cr. (Jason McLellan, WDFW, unpublished data). Three coastal rainbow 134 trout hatchery stocks, Goldendale, Eells Springs and South Tacoma (McCloud River 135 origin with additional components), while not planted into the system or part of the study, 136 were included in the cluster analyses to strengthen the examination of relationships 137 between wild-origin inland rainbow trout and hatchery-origin coastal rainbow trout. 138 Some Lyons Ferry Hatchery steelhead (native anadromous inland rainbow trout, 139 broodstock origin mainly in upper Columbia River; Bumgarner et al. 2003), were also 140 planted (100 fish included). Introgression by hatchery rainbow trout might be detected as 141 clustering with the hatchery sample rather than with populations from nearby tributaries 142 and by coastal ancestry signals in inland populations.

143

144 Hatchery cutthroat trout, planted less extensively (Table 2), were King's Lake broodstock 145 from the Pend Oreille drainage. Nehchen Cr. received at least unofficial one cutthroat 146 infusion around 20 years ago when a landowner brought in fish following dewatering of 147 the creek (Bruce Kinkead, Coeur d'Alene Tribal Biologist, pers. comm.). Two Nehchen 148 Cr. samples (102 fish) were included to determine if fish were cutthroat trout rather than 149 rainbow trout (redband rainbow have markings similar to cutthroat, Behnke 1992). We 150 compared all samples in the study to three cutthroat trout samples from the Pend Oreille 151 drainage that had been collected for another study, (Sullivan Lake, Sullivan Cr., and Gold 152 Cr.), to identify potential cutthroat trout and possible hybrids. Prior to stocking (and 153 introduction) cutthroat trout were only present above Spokane Falls. Cutthroat and 154 rainbow trout may hybridize, but naturally occupy different portions of a tributary (Allendorf et al. 2001; Marshall et al. 2006). Fish may be forced into proximity and thus 155

156 hybridize if hatchery cutthroat trout are introduced into a rainbow-occupied tributary with157 limited habitat.

158

159 Sample processing

160 DNA from 1502 wild-origin rainbow trout, 445 hatchery rainbow trout and 102 wild-

161 origin cutthroat trout was extracted using a chelex protocol (Small *et al.* 1998).

162 Microsatellite alleles at 14 loci were PCR-amplified using fluorescently labeled primers

163 (see Table 3 for detailed PCR information). PCR's were conducted on an MJResearch

164 PTC-200 thermocycler in 96 well plates in 5 µl volumes employing 1 µl template with

165 final concentrations of 1.5 mM MgCl₂, 200µM of each dNTP, 1X Promega PCR buffer,

and 0.01U Taq polymerase. After initial three minute denature at 92°, 33 cycles

167 consisting of 92° for 15 seconds, annealing (temperature in Table 3) for 30 seconds,

168 extension at 72° for 60 seconds were followed by a 30 minute extension at 72°. Samples

169 were run on ABI 3100 and 3730 automated sequencers and alleles were sized (to base

170 pairs) and binned using an internal lane size standard (GS500Liz from Applied

171 Biosystems) and Genemapper software (Applied Biosystems). A subsample was run on

172 both sequencer platforms to standardize allele mobilities.

173

174 Within collection data analysis

175 Statistical tests were conducted on loci and samples from each collection site to assess

176 conformation to Hardy Weinberg expectations (Hardy Weinberg equilibrium, HWE), and

177 genotypic heterogeneity using GENEPOP version 3.3 (Raymond and Rousset 1995) with

178 100 batches and 2,000 iterations. Loci were examined for large allele drop-out, null

179 alleles and scoring errors using MICROCHECKER (Van Oosterhout et al. 2004). We 180 used FSTAT 2.9.3 (Goudet 2001) to calculate F_{IS} values and their significance for each locus in each collection (350,000 randomizations), and calculate Weir and Cockerham's 181 (1984) estimators of Wright's F statistics (F, Θ , and f, hereafter referred to as F_{IS} , F_{IT} , 182 and F_{ST}) and their jackknife intervals over all loci. Linkage disequilibrium was assessed 183 184 using GENEPOP with 200 batches and 3,000 iterations. Allelic richness was calculated 185 using rarefaction as implemented in HP-RARE v1.4 (Kalinowski 2004), and based upon 186 permutation of 50 alleles. Populations were tested for population bottleneck signals 187 using BOTTLENECK (Piry et al. 1998). Gene diversity (Nei 1987) was calculated using 188 FSTAT.

189

190 Between collection data analysis

191 Partitioning of molecular variance was explored using AMOVA tests (analysis of 192 molecular variance, Excoffier et al. 1992) implemented in ARLEQUIN 2.000 (Schneider 193 et al. 2001) with collections organized by tributary. We conducted an assignment test 194 using GENECLASS2 (Cornuet et al. 1999) to examine the likelihood that, based upon 195 the genotype of the fish and allele frequencies in collections, an individual fish originated 196 in the population or tributary where it was sampled. We used the Rannula and Mountain 197 (1997) option, with collections grouped by tributary. A Bayesian analysis implemented 198 in STRUCTURE 2.1 (Pritchard et al. 2000) was used to assess hybridization between 199 rainbow and cutthroat trout, to examine introgression by hatchery rainbow trout into 200 native populations, and to estimate individual ancestry. In initial analyses, all collections 201 (cutthroat, hatchery and wild-origin rainbow trout) were included with K (number of

202	clusters or possible populations) set from 2 to 30. With $K = 2$, we hypothesized that the
203	data set would divide into cutthroat and rainbow trout, with possible hybrid individuals
204	sharing ancestry in both groups. With $K = 3$, we hypothesized that the rainbow trout
205	cluster would divide into coastal and inland redband rainbow trout, also with hybrid
206	individuals sharing ancestry in both groups. With $K > 3$ we expected population
207	structure to emerge. Initial analyses with $K = 2$ to 5 were conducted in 10 independent
208	runs allowing admixture with 50,000 burn-ins and 1,000,000 iterations. Due to
209	computational intensity, only single runs (50,000 burn-ins and 1,000,000 iterations) were
210	conducted for $K = 6$ to 30. After identifying collections with possible hatchery
211	introgression (> 25% average ancestry in the cluster occupied by Spokane Hatchery
212	collection), we conducted pairwise tests with introgressed collections and the Spokane
213	Hatchery collection with $K = 2$, to look more closely at introgression (10 runs, 50,000
214	burn-ins, 1,000,000 iterations). Other pairwise tests were employed to examine
215	relationships among collections: collections were tested for heterogeneity in genotypic
216	distributions at each locus and across all loci using GENEPOP with 300 batches and
217	3,000 iterations. To examine the magnitude of differentiation between populations and
218	between tributary groups, pairwise F_{ST} values and their significance were evaluated using
219	FSTAT with 100,000 permutations. All test results were adjusted for multiple
220	comparisons using sequential Bonferroni corrections.
221	
222	Genetic relationships among collections were also explored with cluster analyses.

223 Population allele frequencies were generated from genotypic data using CONVERT 1.3

224 (Glaubitz 2004). Pairwise chord distances (Cavalli-Sforza and Edwards, 1967) among

225	collections were calculated from allele frequencies using GENDIST in PHYLIP 3.5c
226	(Felsenstein 1993). We used geometric distance since fluctuation in population sizes
227	should increase the impact of drift relative to mutation. Chord distances were plotted in a
228	neighbor-joining (NJ) tree using PHYLIP. To test the repeatability of NJ tree branching,
229	the allele frequency file was bootstrapped 10,000 times across loci using SEQBOOT.
230	Tree topologies were created for replicates with NEIGHBOR, and a consensus tree was
231	generated using CONSENSE and plotted with TREEVIEW 1.6.6 (Page 2001). Chord
232	distances were also plotted in a multidimensional scaling analysis using NTSYSpc
233	version 2.02j (Rohlf 1993) to view relationships among collections in the absence of
234	dendrogram architecture.
235	
236	<u>Results:</u>
237	
238	PCR amplifications at some loci were less successful for cutthroat trout than rainbow
239	trout (average missing loci per individual genotype = 4 vs 2, respectively), particularly at
240	One-102, One-108, Ots-100, Ots-1, Omm-1130, Omy-1001, and Omy-1011. Cutthroat
241	trout generally had significant homozygosity at these loci (Table 4). In individual locus
242	tests, 39 out of 462 (14 loci x 33 collections, excluding cutthroat) total F_{IS} tests were
243	significant for excess homozygosity (Table 4, adjusted alpha, $0.05/462 = 0.0001$).
244	Twelve of the significant excesses occurred at One-108 and MICROCHECKER
245	suggested a null allele, so this locus was excluded from further analyses.
246	MICROCHECKER indicated a possible null allele at Omm-1130, but since there were
247	only five significant homozygote excesses at this locus and population HWE significance

248	values were unchanged when Omm-1130 was removed (data not shown), we left this
249	locus in the analysis. In global tests, one third of collections (after removing One-108,
250	Table 1) were out of HWE for homozygote excess, and F_{IT} values (Table 3) indicated
251	significant deficits of heterozygotes at all loci. Average F_{IS} values were higher in above
252	barrier populations than below barrier populations (0.061 and 0.038, respectively), but
253	were not significantly different ($P = 0.06$, FSTAT group comparison, 1000
254	permutations). F_{ST} values indicated significant variance among populations at all loci
255	(Table 3).
256	

257 Positive F_{IS} values and disequilibrium suggested that collections contained offspring 258 from matings among close relatives (inbreeding) within populations or that collections 259 contained admixtures of trout from different breeding groups. To study this further, wild-260 origin rainbow trout collections were examined for family groups and relationships with 261 IDENTIX (Belkhir et al. 2002). In the Deadman Cr. collection, the first nine individuals 262 collected appeared to be siblings (all Q values > 0.35): Queller and Goodnight's (1989) 263 relatedness value Q = 0.25 for half-sibs and 0.5 for full-sibs. In the California Cr. 264 collection, five individuals appeared to be full sibs. Mean relatedness values for 265 Nehchen, Coulee, and Dartford creeks (above barrier) were in the top 5% of a random 266 distribution of 500 permuted values. However, all but the Buck Cr. sample had 267 significantly high variance in pairwise relatedness values among individuals, suggesting 268 related groups within most samples (Belkhir et al. 2002). Further, some pairwise 269 relatedness values suggested that half-sib relationships (offspring of mating among 270 relatives) increased in collections from further up drainages (e.g. Lower Spokane = 2%

271	half sibs, Middle Spokane = 3.8% half sibs and Upper Spokane = 5.2% half sibs).
272	Relatedness values were higher in above barrier collections than in below barrier
273	collections (-0.079 and -0.129 , respectively), and the differences were on the edge of
274	significance ($P = 0.05$, FSTAT group test, 1000 permutations). In collections from
275	headwaters and regions isolated above barriers, population sizes may have been restricted
276	by available habitat, fostering mating among relatives and decreasing heterozygosity
277	through inbreeding (Castric et al. 2002). In streams with intermittent good habitat,
278	collections may have included breeding groups associated with habitat patches, which
279	would decrease overall heterozygosity in a Wahlund-type effect (Castric et al. 2002).
280	Thus, although sampling followed a randomized design, some samples contained non-
281	random components or related individuals.
282	
283	In other examinations, loci were tested for linkage in pairwise genotypic disequilibrium
284	tests. Several collections had one to three pairs of loci (out of 78 possible pairs per
285	population after One-108 was removed) in linkage disequilibrium, with a high of 9 in
286	California Cr. (Table 1). After removing four of five siblings in the California Cr.

287 collection, only one locus pair was linked. No locus pair was linked in more than three

populations. *Omm*-1130 was involved in 11/29 linkages (8/21 after California Cr.

siblings removed).

290

291 Among wild collections, allelic richness was highest in lower Little Spokane River and

292 lowest in Coulee Cr. (Table 1). Allelic diversity was lower but not significantly different

in collections from upper portions and smaller branches of tributaries (9.2 in above

294 barrier collections vs 10.2 in below barrier collections, P = 0.056 from FSTAT group 295 comparison, 1000 permutations) suggesting smaller effective population sizes or fewer 296 founders in above barrier collections. Bottleneck tests conducted under the infinite allele 297 model also supported recent reduction in population sizes in several collections (Table 1). 298 Gene diversity generally concurred with other diversity measures: collections with higher 299 allelic richness had higher gene diversity. Six alleles at various loci were absent from 300 coastal hatchery collections (Spokane and Trout Lodge hatcheries) and present at 301 intermediate frequency (4-9%) in suspected introgressed collections and present at high 302 frequency (15 - 28%) in suspected pure redband rainbow trout collections. Sixteen 303 alleles at various loci were found at high frequencies in coastal hatchery collections, 304 intermediate frequencies in suspected introgressed collections, and low frequencies in 305 suspected pure redband rainbow trout collections. Coastal hatcheries had no private 306 alleles, Phalon Lake had 16 private alleles, and Lyons Ferry Hatchery had 10 private 307 alleles. All alleles in coastal hatchery collections were found in wild-origin collections, 308 although sometimes at very low frequencies (eg. 26% in Spokane Hatchery vs 0.4% in 309 wild). Two hundred and sixteen alleles present in redband rainbow trout collections 310 (wild or hatchery) were absent in coastal hatchery collections.

311

Pairwise (not shown) and global F_{ST} values (overall $F_{ST} = 0.080$, excluding cutthroat trout and hatchery collections) were all significantly different from 0 (pairwise test adjusted alpha = 0.05/300 = 0.000167) except within the following tributaries: Deer and Little Deer creeks, upper and lower Deep Creek, Dartford Cr. above and below barrier, 2002 and 2003 middle Spokane River, and 2003 Indian and 2004 Indian from upper 317 Hangman (other Hangman collections were too small for statistical tests). Pairwise 318 genotypic test results (not shown) were similar to pairwise F_{ST} test with one additional 319 non-significant comparison, Little Deep and South Fork Little Deep creeks. Populations 320 occupying tributaries within the greater Spokane drainage were thus genetically 321 differentiated from each other and distinct from hatchery rainbow trout and steelhead. 322 323 AMOVA results supported pooling samples by tributary. Although significant variation 324 was partitioned within tributaries (3.21%, P < 0.001), more variation was found among 325 tributaries (5.51%, P < 0.001). In pairwise F_{ST} tests with collections grouped by 326 tributary, all values were significantly different from 0 (Table 5). Coulee Cr., unstocked 327 and isolated above a dry creek bed, was highly differentiated from other collections (see 328 average and individual values in Table 5). Deep Cr., also isolated by a dry creek bed but 329 exposed to hatchery escapees from ponds in upper Deep Cr. and limited stocking, was 330 genetically closer to other collections impacted by hatchery fish through stocking or 331 escapees: Buck and Dartford creeks and lower Little Spokane River.

The topology of the consensus neighbor-joining tree and bootstrap support illustrated associations among collections within tributaries (Figure 2). Tributary collections formed branches with at least 98% bootstrap support. Collections from lower portions of tributaries (eg. middle Spokane River) had shorter branch lengths indicating less distinction, possibly due to one-way gene flow from upper tributaries and straying from other tributaries. Cutthroat trout and Nehchen Cr. collections formed a branch with 100% bootstrap support, indicating that Nehchen Cr. fish were cutthroat trout. Coastal

hatchery collections occupied a branch, which included Trout Lodge Hatchery, Marshall 340 341 Cr., and Deep Cr. collections with 64% bootstrap support (Figure 2), indicating a coastal 342 origin for Trout Lodge broodstock and possible hatchery introgression in Marshall and 343 Deep creek populations. In a consensus tree with combined collections (not shown), the 344 Buck and Dartford creek collections also joined the hatchery branch with 75% bootstrap 345 support, also suggesting hatchery introgression into these collections. In a 346 multidimensional scaling plot employing combined collections (Figure 3), the first axis was defined by Trout Lodge and Spokane Hatchery on the far left and Lyons Ferry 347 348 Hatchery on the far right, with the Marshall, Dartford, Buck and Deep creek collections 349 on the coastal hatchery side and putative native inland redband rainbow trout collections 350 and Phalon Lake on the Lyons Ferry Hatchery side. The first axis appears to show a 351 genetic gradient from coastal to introgressed inland rainbow to inland rainbow and 352 steelhead collections (Figure 3).

353

354 Hybridization with cutthroat trout and introgression by hatchery fish were estimated with 355 a Bayesian analysis. When the number of hypothetical populations (K) was set at 2, 356 cutthroat trout and Nehchen Cr. occupied one cluster and coastal and inland rainbow trout 357 collections occupied the other cluster, with an average 3% or less cutthroat ancestry in 358 each rainbow trout collection (Table 6). Three individual fish (individual data not 359 shown) from upper Spokane appeared to be cutthroat-rainbow hybrids (10 - 30% ancestry 360 in cutthroat trout cluster) and one was a possible cutthroat trout (90% ancestry in 361 cutthroat trout cluster). With K = 3 (Table 6), rainbow trout collections divided: inland 362 redband rainbow trout collections occupied a cluster that included Lyons Ferry Hatchery

363 and Phalon Lake, and coastal hatchery groups occupied a cluster that included substantial 364 portions (> 25%) of some inland redband rainbow trout collections that had been stocked 365 with hatchery fish over several years (lower Little Spokane River, Buck, Deep (additional 366 pond escapes), Dragoon, and Marshall creeks). Collections from above barriers in 367 tributaries with single or few stockings (Otter, Deer, Coulee creeks, and Upper Little 368 Spokane River) shared modest ancestry (6 - 18%) with coastal hatchery fish. Collections 369 from below barriers that were stocked once or possibly exposed to hatchery strays 370 (California, Little Deep, West Branch Dragoon and Upper Dragoon creeks) also shared 371 modest ancestry (13 - 18%) with the coastal hatchery cluster. The mouth of Dartford Cr. 372 was a kilometer below the Spokane Hatchery outfall, and collections from below and 373 above the culvert (semi-permeable barrier) shared around 50% ancestry with coastal 374 hatchery fish. Collections from unstocked tributaries above barriers (all Hangman 375 tributaries, South Fork Deadman, North and South Fork Little Deep, and Little Deer 376 creeks) had less than 3% ancestry in the coastal hatchery cluster. The 2001 and 2002 377 Phalon Lake collections shared 30% and 2% ancestry with coastal hatchery fish, 378 respectively: Phalon Lake broodstock was suspected of contamination with coastal 379 hatchery fish and was reconstructed in 2002. In analyses with K = 4 (all collections 380 included), Spokane Hatchery and coastal hatchery collections moved into their own 381 cluster (data not shown). With increased K, tributary groups and then single collections 382 eventually occupied predominantly single clusters, and some collections subdivided 383 among multiple clusters (data not shown).

We conducted further STRUCTURE analyses with suspected introgressed collections (> 25% coastal ancestry) paired with the Spokane Hatchery collection with K = 2 (Table 7). In these analyses inland collections shared less than 2% Spokane Hatchery ancestry. Individual fish admixture values indicated that 1% of wild-origin inland redband rainbow individuals shared more than 10% ancestry with the Spokane Hatchery collection (7/642 fish, average coastal ancestry within these 7 fish = 19%, highest = 37%).

392 In maximum likelihood assignment tests, assignments were classified as positive and 393 unambiguous if the assignment was 100 times more likely than the next most likely 394 assignment, and positive but ambiguous when the assignment was less than 100 times 395 more likely. Most fish were assigned unambiguously to their tributary of origin (Table 396 8). Misassigned fish (fish not assigning to collection of origin) may be strays coming 397 down out of tributaries into the Spokane and Little Spokane rivers, or fish moving among 398 tributaries in Deadman, Little Deep and Dragoon creeks. A few fish were ambiguously 399 misassigned between 01Phalon Lake and wild-origin rainbow collections. Since few 400 Phalon Lake fish were planted in the system, this may reflect shared common ancestry 401 rather than introgression. Spokane and Trout Lodge hatcheries had 100% correct 402 assignment and no wild-origin fish were assigned to hatchery collections, suggesting low 403 impact on native populations.

404 <u>Discussion</u>:

405 Introgression by hatchery rainbow trout

406 This study explored the population structure of wild rainbow trout populations in the 407 greater Spokane River drainage and assessed whether hatchery fish planted throughout 408 the system over the past 100 years had introgressed into native populations. Since we 409 lacked genetic data for native populations prior to hatchery supplementation, we 410 compared gene pools of wild spawning populations to gene pools maintained in 411 hatcheries and introduced into the system within the past 60 years. A coastal strain of 412 rainbow trout was the most extensively planted hatchery fish. Introgression by coastal 413 hatchery rainbow trout was indicated in collections exposed to hatchery fish through 414 escapees and planting (lower Little Spokane River, Buck, Marshall, Deep, and Dartford 415 creeks). We suspected hatchery introgression because these collections were on the 416 coastal branch in the neighbor-joining tree and the coastal side of the first axis in the 417 multidimensional scaling analysis and appeared to share coastal ancestry in the large-418 scale Bayesian analysis. However, in contrast to other studies where some wild-origin 419 fish assigned to hatcheries after several years of stocking (Fritzner et al. 2001; Hansen et 420 al. 2001; Spidle et al. 2003), assignment tests suggested that hatchery impact was not as 421 strong as might be expected. Further, other hatchery introgression studies demonstrated 422 admixture in wild-origin individuals (Hansen 2002, Sušnik et al. 2004), whereas our 423 pairwise analyses with hatchery and introgressed wild-origin indicated that wild 424 collections shared little ancestry with hatchery collections and few individuals appeared 425 admixed. We hypothesized that in inland redband rainbow trout populations exposed to 426 coastal-origin hatchery rainbow, introgression shifted these gene pools away from the

427 native inland redband rainbow trout gene pool but not to the point where the individual428 identity of a population was compromised.

429

430 Hatchery fish have not replaced wild fish in any collection examined. All wild-origin 431 gene pools had alleles absent from the hatchery gene pool and wild fish remain 432 genetically distinct from hatchery fish (Table 5). All alleles in coastal-origin hatchery 433 fish were found in inland collections, supporting introgression into inland populations: 434 several alleles at high frequency in coastal hatchery fish were at intermediate frequency 435 in suspected introgressed populations and at low frequency in populations unexposed to 436 hatchery fish. Genetic drift may have eliminated some coastal-type allelic diversity 437 during 60 years of hatchery rearing. It is unlikely that associations between wild and 438 hatchery fish arose from native inland redband rainbow trout entering hatchery gene 439 pools since other coastal hatchery collections clustered with Spokane and Trout Lodge 440 hatchery collections. We suspect that, similar to other species (Williams et al. 1997; 441 Nielsen et al. 2001; Weber and Fausch 2003; McGinnity et al. 2004), hatchery-adapted 442 rainbow trout of coastal ancestry did not replace native fish because they may not have 443 survived as well or been as successful on wild spawning grounds as regionally adapted 444 native inland redband rainbow trout, and that hybrid offspring may have suffered reduced 445 survival and fitness (Utter 2001).

446

447 The mainstem of the Spokane and Little Spokane rivers were heavily planted (Table 2)

448 but showed little impact from hatchery fish. In the middle Spokane River, below

449 Spokane Falls, hatchery fish tended to move down the river into the reservoir associated

450 with Nine Mile Falls dam (McLellan 2005a), and thus may not have used upstream 451 mainstem and tributary spawning grounds. Similarly, the Little Spokane River enters 452 Long Lake dam reservoir and hatchery fish may have moved down into the reservoir. 453 Dragoon and Deadman creeks also received a fair number of hatchery fish but showed 454 little relationship to hatchery collections. Dragoon Cr. encompassed some of the most 455 degraded habitat in the system, although a spring in the middle of the system provided a 456 refuge, and in Deadman Cr., good habitat was intermittent between large stretches of 457 poor habitat (McLellan 2005a, 2005b). In both tributaries, hatchery fish may have 458 survived poorly or were unable to compete with native fish inhabiting habitat patches. 459 460 Two inland stocks from Phalon Lake and Lyons Ferry Hatchery were also planted 461 minimally into the Spokane River system. Assignment tests suggested that a few 462 Deadman Cr., and Little Spokane River fish looked genetically like Phalon Lake fish 463 (Table 8). Since Phalon Lake fish were planted in the Little Spokane River (Table 2), 464 and fish from the Little Spokane River appeared to stray into Deadman Cr. (Table 8), 465 these misassigned fish could have originated at Phalon Lake. However, three Phalon 466 Lake fish looked genetically like wild rainbow in lower Little Spokane River. Reciprocal 467 misassignments could also reflect recent shared ancestry: although mouths of the 468 Spokane and Kettle rivers are around 100 km apart, prior to 1911 no barriers prevented 469 straying. The relationship may also reflect common ancestry if colonists from the same 470 refuge repopulated inland drainages following the retreat of glaciers and glacial lakes 471 (Currens 1997, McCusker et al. 2000, Docker and Heath 2002).

473 Stocking efforts were lower for cutthroat trout and we saw no evidence of genetic impact 474 in collections from stocked regions. Four possible hybrids were collected in the upper 475 Spokane River, which had not been stocked, but was the only region where cutthroat 476 trout had occurred naturally prior to stocking. However, our results indicated that 477 cutthroat trout were successfully introduced into Nehchen Cr. in the upper Hangman Cr. 478 drainage following dewatering 20 years ago. The dewatering may have eliminated native 479 rainbow trout, allowing the cutthroat trout unchallenged colonization. Further, these 480 cutthroat trout were from Benewah Cr. in the Coeur d'Alene drainage across the ridge 481 from Nehchen Cr. Ecological conditions may have been similar such that fish were 482 adapted to conditions prevailing in Nehchen Cr.

483

484 Impact of barriers

485 The impact of hatchery supplementation was complexed with habitat quality and the 486 presence, permeability and duration of barriers. Habitat in the Spokane drainage was 487 affected by anthropogenic activities throughout the 1900's. In addition to hatchery 488 supplementation and decreases in water quality and availability, dam and road building 489 decreased physical connectivity throughout the drainage. Most collections exhibited 490 genetic signals suggesting that populations had experienced genetic bottlenecks that 491 might be associated with disrupted gene flow. The foremost effect of barriers upon 492 populations depended upon whether the barrier could be traversed. All barriers allowed 493 fish to move downstream, generating one-way gene flow between formerly connected 494 groups of fish.

Some barriers permitted upstream movement. In Dartford Cr., the barrier was a culvert surmountable by larger fish under certain flow conditions. Although allelic richness was lower above the barrier, the collections were undifferentiated indicating that the population remained connected and possibly effectively larger, countering drift and differentiation. The semi-permeable barrier also allowed hatchery introgression into the portion of the population above the barrier.

502

In Deadman Cr., barriers included an unsurmountable dam as well two possibly 503 504 surmountable culverts. Although genetically closest to each other, the population in SF 505 Deadman Cr. that was isolated above the barriers differed significantly from the 506 Deadman Cr. population below the barriers. While their genetic relationship prior to 507 barriers is unknown, the longer branch length in the dendrogram, decreased allelic 508 richness, and positive bottleneck signal suggested that the isolated SF Deadman Cr. 509 population experienced enhanced genetic drift. 510 511 Within Deep Cr., a waterfall barrier predated human activity. Although the tributary was 512 further isolated by a dry creek bed (discussed below), hatchery fish influenced collections 513 above and below the waterfall, likely bringing the gene pools closer to each other and to

514 other gene pools influenced by hatchery fish (Waples 1995). In the Little Spokane River,

a waterfall also divided the river into upper and lower regions. While documented

516 hatchery stocking was mild in the upper river and intense in the lower river, hatchery fish

517 were free to move down-river into Long Lake, a preferred habitat, possibly decreasing

518 impact on the populations. The pairwise F_{ST} value indicated that the upper and lower

river collections had more variance between them than all other above and below barrier
comparisons, possibly because of longer isolation, fewer founders in the upper river
population, and lower hatchery impact.

522

523 Habitat quality and availability also likely influenced population sizes and rates of 524 genetic drift. Where habitat was poor or patchy and limited by a barrier, as in Dragoon 525 Creek, drift would be stronger in smaller populations, increasing divergence seen in 526 longer branch lengths in the dendrogram. In collections from upper drainages positive 527 $F_{\rm IS}$ values, higher relatedness and lower allelic richness indicated smaller population 528 sizes. In contrast, populations below barriers where habitat was less restricted, such as 529 the lower Spokane River and Deadman Cr., received allelic infusions from strays, 530 increasing their allelic richness and genetic connections to other populations (where 531 strays originated), illustrated by short branch lengths in the dendrogram and lower 532 average pairwise $F_{\rm ST}$ values.

533

534 The Coulee Cr. collection was the most divergent in the study, and although habitat is 535 good above the barrier and supported a large population, the dry creek bed isolated the 536 tributary long before humans altered connectivity in the system. Given the episodic 537 nature of flow throughout the full creek length, divergence may have been enhanced by a 538 small founder group. Deep Cr. shared the barrier (and likely founders) with Coulee Cr. 539 However, as discussed above, exposure to hatchery fish ponded above the barrier and 540 stocked into Deep Cr. shifted the Deep Cr. gene pool closer to other hatchery-influenced 541 collections as well as increasing allelic richness in Deep Cr.

543	We found that, similar to brown trout (Van Houdt et al. 2005), barriers protected some
544	populations from hatchery escapees, thus preserving some native genetic diversity. In
545	unstocked tributaries, collections from above barriers, had little to no coastal hatchery
546	genetic signal and collections from below barriers appeared to be introgressed. The data
547	suggested that hatchery introgression in wild populations depended upon the magnitude
548	of exposure to hatchery fish through stocking or hatchery escapees.
549	
550	
551	Acknowledgements
552	Funding was provided by the Bonneville Power Administration through a subcontract
553	with the Kalispel Tribe, by Avista Corporation, and by WDFW state general funds. Most
554	samples were collected by Jason McLellan (WDFW). Samples from Trout Lodge, Inc.
555	were provided by Bill Witt. Bruce Kinkead, Coeur d'Alene Tribal Biologist, collected
556	upper Hangman Creek samples and provided insights into the natural and contemporary
557	history of the drainage. The manuscript was improved by thoughtful review by Denise
558	Hawkins, Sewall Young and Ken Warheit (WDFW), Gary Winans (NMFS), and three
559	anonymous reviewers.
560	

562	Allendorf, F. W., R. F. Leary, P. Spruell, and J. K. Wenburg. 2001. The problem with
563	hybrids: setting conservation guidelines. Trends in Ecology and Evolution
564	16(11):613-622.

- 565 Banks, M. A., M. S. Blouin, B. A. Baldwin, V. K. Rashbrook, H. A. Fitzgerald, S. M.
- Blankenship, and D. Hedgecock. 1999. Isolation and inheritance of novel
 microsatellites in chinook salmon (*Oncorhynchus tschawytscha*). Journal of
 Heredity 90:281-288
- Behnke, R. J. 1992. Native trout of western North America. American Fisheries Society,
 Monograph 6, Bethesda, Maryland.
- 571 Belkhir K., V. Castric, and F. Bonhomme. 2002. IDENTIX, a software to test for
- 572 relatedness in a population using permutation methods. Available from

573 www.univ-montp2.fr/~genetix/labo.htm#programmes

- 574 Bumgarner, J., M. P. Small, L. Ross, and J. Dedloff. 2003. Lyons Ferry Complex
- 575 Hatchery Evaluation: Summer Steelhead and Trout Report 2001 and 2002 Run
- 576 Years to USFWS Lower Snake River Compensation Plan Office. Report #
 577 FPA03-15.
- Busack, C.A. and A. A. E. Gall. 1980. Ancestry of artificially propagated California
 rainbow trout strains. California Fish and Game, 66(1):17-24.
- 580 Castric, V., L. Bernachez, K. Belkhir, and F. Bonhomme. 2002. Heterozygote
- 581 deficiencies in small lacustrine populations of brook charr *Salvelinus Fontinalis*
- 582 Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity 89:27–35.
- 583 Cavalli-Sforza, L. L. and A. W. F. Edwards. 1967. Phylogenetic analysis: models and

584	estimation procedures. American Journal of Human Genetics 19:233-257.
585	Cornuet, JM., S. Piry, G. Luikart, A. Estoup, and M. Solignac. 1999. New methods
586	employing multilocus genotypes to select or exclude populations as origins of
587	individuals. Genetics 153:1989-2000.
588	Crawford, B. A. 1979. The origin and history of the trout brood stocks of the Washington
589	Department of Game. Washington State Game Department Fisheries Research
590	Report, 76 pp.
591	Currens, K. P., C. B. Schreck, and H. W. Li. 1990. Allozyme and Morphological
592	divergence of rainbow trout (Oncorhynchus mykiss) above and below waterfalls
593	in the Deschutes River, Oregon. Copei 3:730-746.
594	Currens, K. P. 1997. Evolutionary Ecology of redband trout. In: Evolution and Risk in
595	Conservation of Pacific salmon. PhD. Dissertation. Oregon State University,
596	Corvallis, Oregon.
597	Docker, M. F. and D. D. Heath. 2002. Genetic comparison between sympatric
598	anadromous steelhead and freshwater resident rainbow trout in British Columbia,
599	Canada. Conservation Genetics 4(2):227-231.
600	Excoffier, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance
601	inferred from metric distances among DNA haplotypes: application to human
602	mitochondrial DNA restriction data. Genetics 131:479-491.
603	Felsenstein, J. 1993. Phylogeny inference package (PHYLIP) Version 3.5c. University of
604	Washington, Seattle.
605	Fritzner, N. G., M. M. Hansen, S. S. Madsen, and K. Kristiansen. 2001. Use of
606	microsatellite markers for identification of indigenous brown trout in a

- 607 geographical region heavily influenced by stocked domesticated trout. Journal of
 608 Fish Biology 58:1197–1210.
- 609 Glaubitz, J. 2004. CONVERT: A user-friendly program to reformat diploid genotypic
- 610 data for commonly used population genetic software packages. Molecular
 611 Ecology Notes 4(2):309-310.
- 612 Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation
- 613 indices (version 2.9.3). Updated from Goudet (1995) Available from
 614 http://www.unilch/izea/softwares/fstat.html
- Hansen, M. M. and K.-L. D. Mensberg. 1998. Genetic differentiation and relationship
- between genetic and geographical distance in Danish sea trout (*Salmo trutta* L.)
 populations. Heredity 81:493-504.
- Hansen, M. M., E. E. Nielsen, D. Bekkevold, and K.-L. D. Mensberg. 2001. Admixture
- analysis and stocking impact assessment in brown trout (*Salmo trutta*), estimated
 with incomplete baseline data. Canadian Journal of Fisheries and Aquatic Science
 58:1853-1860.
- Hansen, M. M. 2002. Estimating the long-term effects of stocking domesticated trout into
- 623 wild brown trout (*Salmo trutta*) populations: an approach using microsatellite
- 624DNA analysis of historical and contemporary samples. Molecular Ecology
- 625 11:1003-1015.
- Hindar, K., N. Ryman, and F. Utter. 1991. Genetic effects of cultured fish on natural fish
 populations. Canadian Journal of Fisheries and Aquatic Science 48:945-957.
- 628 Kalinowski, S. K. 2005. HP-RARE 1.0: a computer program for performing rarefaction
- on measures of allelic richness. Molecular Ecology Notes 5(1)287.

630	Marshall, A. M., M. P. Small, and S. Foley. 2006. Genetic relationships among
631	anadromous and non-anadromous Oncorhynchus mykiss in Cedar River and Lake
632	Washington - implications for steelhead recovery planning. Final Report to Cedar
633	River Anadromous Fish Committee and Seattle Public Utilities.
634	McCusker, M. R., E. Parkinson, and E. B. Taylor. 2000. Mitochondrial DNA variation in
635	rainbow trout (Oncorhynchus mykiss) across its native range: Testing
636	biogeographical hypotheses and their relevance to conservation. Molecular
637	Ecology 99:2089-2108.
638	McGinnity, P., P. Prodöhl, N. Ó Maoiléidigh, R. Hynes, D. Cotter, N. Baker, B. O'Hea,
639	and A. Ferguson. 2004. Differential lifetime success and performance of native
640	and non-native Atlantic salmon examined under communal natural conditions.
641	Journal of Fish Biology 65(s1):173-187.
642	McLellan, J. G. 2005a. 2003 WDFW Annual Report for the Project Resident Fish Stock
643	Status Above Chief Joseph and Grand Coulee Dams. Part I. Baseline assessment
644	of fish species distribution and densities in the Little Spokane River drainage,
645	year 3, and the Spokane River below Spokane Falls. In: Connor, J., and nine
646	other authors. 2005. Resident fish stock status above Chief Joseph and Grand
647	Coulee Dams. 2003 Annual Report, Report to Bonneville Power Administration,
648	Project No. 199700400.
649	McLellan, J. G. 2005b. 2004 WDFW Annual Report for the Project Resident Fish Stock
650	Status Above Chief Joseph and Grand Coulee Dams. Part I. Baseline assessment
651	of fish species distribution and densities in Deep and Coulee creeks and a genetic
652	assessment of the wild rainbow trout populations in select tributaries of Latah

653	(Hangman) Creek and the middle Spokane River in: Connor, J., and nine other
654	authors. 2005. Resident fish stock status above Chief Joseph and Grand Coulee
655	Dams. 2004 Annual Report, Report to Bonneville Power Administration, Project
656	No. 199700400.
657	Morris, D. B., K. R. Richard, and J. M. Wright. 1996. Microsatellites from rainbow trout
658	(Oncorhynchus mykiss) and their use for genetic study of salmonids. Canadian
659	Journal of Fisheries and Aquatic Science 53:120-126.
660	Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
661	Nelson, R. J., and T.D. Beacham. 1999. Isolation and cross species amplification of
662	microsatellite loci useful for study of Pacific salmon. Animal Genetics 30:228-
663	229.
664	Neraas, L. P. and P. Spruell. 2001. Fragmentation of riverine systems: the genetic effects
665	of dams on bull trout (Salvelinus confluentus) in the Clark Fork River system.
666	Molecular Ecology 10:1153-1164.
667	Nielsen, J. L., K. D. Crow, and M. C. Fountain. 1999. Microsatellite diversity and
668	conservation of a relic trout population: McCloud River redband trout. Molecular
669	Ecology 8:S129-S142.
670	Nielsen, E. E., M. M. Hansen, and L. A. Bach. 2001. Looking for a needle in a haystack:
671	discovery of indigenous Atlantic salmon (Salmo salar L.) in stocked populations.
672	Conservation Genetics 2:219-232.
673	Olsen, J. B., S. L. Wilson, E. J. Kretschmer, K. C. Jones, and J. E. Seeb. 2000.
674	Characterization of 14 tetranucleotide microsatellite loci derived from sockeye
675	salmon. Molecular Ecology 9:2185-2187.

- 676 Page, R. D. M. 2001. TreeView (Win32) 1.6.6 Tree drawing software for Apple
- 677 Macintosh and Microsoft Windows: available at
- 678 http://taxonomy.zoology.gla.ac.uk/rod/rod.html
- 679 Piry, S., G. Luikart, and J.-M. Cornuet. 1998. BOTTLENECK, a program for detecting
- 680 recent population effective population size reductions from allele frequency data.
- 681 Available from http://www.ensam.inra.fr.URLB.
- Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure
 using multilocus genotype data. Genetics 155:945-959.
- Queller, D. C., and K. F. Goodnight. 1989. Estimating relatedness using genetic markers.
 Evolution 43(2):258-275.
- 686 Rannala, B. and J. L. Mountain. 1997. Detecting immigration by using multilocus
- 687 genotypes. Proceedings of the National Academy of Sciences USA 94:9197-9201.
- 688 Raymond, M. and F. Rousset. 1995. GENEPOP (Version 3.3): Population genetics

software for exact tests and ecumenicism. Journal of Heredity 86:248-249.

- 690 Reisenbichler, R. R. and S. P. Rubin. 1999. Genetic changes from artificial propagation
- 691 of Pacific salmon affect the productivity and viability of supplemented
- 692 populations. ICES Journal of Marine Science 56:459-466.
- 693 Rexroad III, C. E., R. L. Coleman, A. M. Martin, W. K. Hershberger, and J. Killefer.
- 694 2001. Thirty-five polymorphic microsatellite markers for rainbow trout
- 695 (*Oncorhynchus mykiss*). Animal Genetics 32:317-319.
- Rohlf, F. J. 1993. Numerical taxonomy and multivariate analysis system. Version 2.02J.
- 697 Applied Biostatistics Inc., Setauket, NY.

698	Schneider, S., D. Roessli, and L. Excoffier. 2000. Arlequin Version (2.001): a software
699	for population genetic data analysis. Genetics and Biometry Laboratory
700	University of Geneva, Switzerland.
701	Small, M. P., T. D. Beacham, R. E. Withler, and R. J. Nelson. 1998. Discriminating coho
702	salmon (Oncorhynchus kisutch) populations within the Fraser River, British
703	Columbia. Molecular Ecology 7:141-155.
704	Smith, C. T., B. F. Koop, and R. J. Nelson. 1998. Isolation and characterization of coho
705	salmon (Oncorhynchus kisutch) microsatellites and their use in other salmonids.
706	Molecular Ecology 7:1613-1621.
707	Spidle, A. P., S. T. Kalinowski, B. A. Lubinski, D. L. Perkins, K. F. Beland, J. F. Kocik,
708	and T. L. King. 2003. Population structure of Atlantic salmon in Maine with
709	reference to populations from Atlantic Canada. Transactions of the American
710	Fisheries Society 132:196-209.
711	Spies, I. B., D. J. Brasier, P. T. O'Reilly, T. R. Seamons, and P. Bentzen. 2005.
712	Development and characterization of novel tetra-, tri-, and dinucleotide
713	microsatellite markers in rainbow trout (Oncorhynchus mykiss). Molecular
714	Ecology Notes 5:278-281.
715	Spruell, P., A. R. Hemmingsen, P. J. Howell, N. Kanda, and F. W. Allendorf. 2003.
716	Conservation genetics of bull trout: geographic distribution of variation at
717	microsatellite loci. Conservation Genetics 4(1):17-29.
718	Sušnik, S., P. Berrebi, P. Dove, M .M. Hansen, and A. Snoj. 2004. Genetic introgression
719	between wild and stocked salmonids and the prospects for using molecular

- markers in population rehabilitation: the case of the Adriatic grayling (*Thymallus thymallus* L. 1785). Heredity 93:273-282.
- Taylor, E. B. 1991. A review of local adaptation in Salmonidae, with particular reference
 to Pacific and Atlantic salmon. Aquaculture 98:185-207.
- Taylor, E. B., M. D. Stamford, and J. S. Baxter. 2003. Population subdivision in
- 725 westslope cutthroat trout (*Oncorhynchus clarki lewisi*) at the northern periphery
- 726 of its range: evolutionary inferences and conservation implications. Molecular
- 727 Ecology 12(10):2609-2622.
- 728 USGS 2006. United States Geological Survey: the Channeled Scablands of Eastern
- 729 Washington. Available online at
- 730 http://www.cr.nps.gov/history/online_books/geology/publications/
- Utter, F. M. 2001. Patterns of subspecific anthropogenic introgression in two salmonid
 genera. Reviews in Fish Biology and Fisheries 10:265-279.
- 733 Van Houdt, J. K. J., Pinceel, M. -C. Flamand, M. Briquet, E. Dupont, F. A. M.
- 734 Volckaert, and P. V. Baret. 2005. Migration barriers protect indigenous brown
- 735 trout (*Salmo trutta*) populations from introgression with stocked hatchery fish.
- 736 Conservation Genetics 6 (2): 175-191.
- 737 Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley. 2004. Micro-
- Checker: software for identifying and correcting genotyping errors in
 microsatellite data. Molecular Ecology Notes 4:535-538.
- 740 Waples, R. S. 1995. Evolutionary significant units and the Conservation of biological
- 741 diversity under the Endangered Species Act. *In* Evolution and the Aquatic
- Ecosystem: Defining unique units in population conservation. *Edited by* Nielsen,

- J. L. and G. A. Powers. Symposium 17. American Fisheries Society: Betheseda,
 Maryland, pp 8-27.
- Weir, B. S. and C. C. Cockerham. 1984. Estimating *F*-statistics for the analysis of
 population structure. Evolution 38:1358-1370.
- Weber, E. D. and K. D. Fausch. 2003. Interactions between wild and hatchery salmonids
 in streams: differences in biology and evidence for competition. Canadian Journal
 of Fisheries and Aquatic Science 60:1018-1036.
- 750 Williams, R. N., R. F. Leary, and K. D. Currens. 1996. Localized genetic effect of long-
- 751 term hatchery stocking program on resident rainbow trout in the Metolius River,
- 752 Oregon. North American Journal of Fisheries Management 17:1079-1093.

Table 1. Statistical information for collections: the number of locus pairs in genotypic

154 linkage disequilibria (link), gene diversity (Gene Div), allelic richness (Rich), positive

bottleneck signal (BNeck) and F_{IS} and associated P value (bold values significant after

corrections). Combined abbreviation (Comb) indicates groups for assignment and pairwise F_{ST} tests. "Hatch" indicates hatchery and na = sample too small. Collections

River	Collection	Abbreviation	n Comb	n	link	Gene Div	Rich	BNeck	$F_{\rm IS}$	P value
Upper Hangman Cr.	2003 Mission Cr.*	MSS	Hang	9	na	na	na	na	na	na
	2004 Mission Cr.*	MSS	Hang	10	na	na	na	na	na	na
	2003 Sheep Cr.*	MSS	Hang	3	na	na	na	na	na	na
	2004 Sheep Cr.*	MSS	Hang	5	na	na	na	na	na	na
	2003 Martin Cr.*	03Martin	Hang	13	na	na	na	na	na	na
	2004 Hangman Cr.*@	04Hang	Hang	9	na	na	na	na	na	na
	2003 Indian Cr.*	03Indian	Hang	37		0.75	9.05	х	0.053	0.004
	2004 Indian Cr.*	04Indian	Hang	21		0.77	na	na	0.091	<0.001
(cutthroa	at) 2003 Nehchen Cr.*	03Nehc		65		0.60	8.51	х	0.162	<0.001
(cutthroa	at) 2004 Nehchen Cr.*	04Nehc		37		0.60	8.51	x	0.092	0.005
Lower Hangman Cr.	2004 Marshall Cr.@	04Marsh		50		0.71	6.57	х	0.060	0.003
	2004 California Cr.@	04Calif		49	9	0.76	8.79	х	0.056	0.002
Spokane R.	2002 Middle Spokane R.*@	02MidSpok	Spok	47		0.77	10.49		0.056	0.002
	2003 Middle Spokane R.*@	03MidSpok	Spok	92		0.74	9.55		0.072	<0.001
	2003 Upper Spokane R.*@	03UpSpok	Spok	67		0.67	7.62		0.071	<0.001
	2004 Coulee Cr.*@	04Coulee		50		0.64	6.36		0.011	0.323
	2004 Deep Cr.*@	04Deep	Deep	50		0.73	8.17	х	0.035	0.031
	2004 Upper Deep Cr.*(@pond escap	e)04UpDeep	Deep	50		0.70	6.71	х	0.018	0.209
Little Spokane R.	2003 Upper Little Spokane R.*@	03UpLSpok		39		0.75	9.07	х	0.043	0.023
	2003 Lower Little Spokane R.@	03LoLSpok		62		0.80	12.17		0.153	<0.001
	2003 Dartford Cr. (above barrier)*	03DartAB	Dart	51		0.79	9.59	х	0.042	0.010
	2003 Dartford Cr. (below barrier)	03DartBB	Dart	29	3	0.78	10.39		0.001	0.477
	2003 Deadman Cr. @	03Dead	Dead	100	2	0.78	11.84		0.111	<0.001
	2003 South Fork Deadman Cr. *	03SFDead	Dead	49	2	0.74	9.99	х	0.037	0.027
	2003 Little Deep Cr.	03LDeep	LDeep	50	1	0.75	11.00		0.030	0.040
	2003 North Fork Little Deep Cr.	03NFLDeep	LDeep	50	1	0.69	8.94		0.034	0.044
	2003 South Fork Little Deep Cr.	03SFLDeep	LDeep	60		0.71	9.46		0.062	<0.001
	2001 Otter Cr.*@	01Otter		50	3	0.76	9.32	х	0.052	0.003
	2001 Deer Cr.*@	01DeerCr	Deer	100		0.77	11.86		0.033	0.003
	2002 Little Deer Cr.*	02LilDeer	Deer	50	1	0.73	10.34		0.037	0.028
	2001 Buck Cr.*@	01Buck		50		0.80	11.19		0.014	0.199
	2002 Lower Dragoon Cr. @	02LoDrag	Drag	100		0.79	11.56	х	0.047	<0.001
	2002 West Branch Dragoon Cr.	02WBDrag	Drag	50	2	0.77	9.53	х	-0.005	0.603
	2002 Upper Dragoon Cr.*	02UpDrag	Drag	50		0.77	10.16	x	0.022	0.112
Hatch (Redband)	2001 Phalon Lake Hatch	01PhaH	PhaH	100	2	0.83	13.38	x	0.021	0.030
	2002 Phalon Lake Hatch	02PhaH	PhaH	100	1	0.79	11.57	x	0.081	<0.001
Hatch (Uncertain)	2004 Trout Lodge Hatch	04TroutH		49		0.65	5.64	x	0.022	0.182
Hatch (Coastal)	2000 Spokane Hatch	00SpHat		96		0.70	6.35	x	-0.007	0.663
Hatch (Upper Columbi	ia) 2002 Lyons Ferry Hatch steelhead	02LFH		100	2	0.74	11 70	x	0.065	<0.001

above barriers indicated by * and stocked collections indicated by @.

Table 2. Sources and numbers of hatchery trout stocked into tributaries and lakes of the Spokane drainage (from Brodie Cox, WDFW, unpublished data). Lakes under Buck Creek were within the Buck Creek system.

3 4

Tributary	# fish	Year planted	# Years planted	Source				
Rainbow								
Coulee Creek	7,000	1936	1	Spokane Hatchery				
Upper Little Spokane River	49,160	1940-1944	5	Spokane Hatchery				
Little Spokane River	922,240	1936 - 2002	36	Spokane Hatchery				
Little Spokane River	500	2002	1	Phalon Lake Hatchery				
Dragoon Creek	388,556	1934 - 1985	20	Spokane Hatchery				
Buck Creek	781,387	1941 - 1980	4	Spokane Hatchery				
Diamond Lake	5,006,950	1933 - 1994	41	Spokane Hatchery				
Diamond Lake	69,768	1997	1	Lyons Ferry Hatchery				
Sasheen Lake	1,963,661	1939 - 1994	35	Spokane Hatchery				
Deadman Creek	78,419	1934 - 1955	13	Spokane Hatchery				
Deer Creek	10,000	1936	1	Spokane Hatchery				
Otter Creek	10,000	1936	1	Spokane Hatchery				
Spokane River	1,348,134	1935 - 2002	34	Spokane Hatchery				
Spokane River	22,296	1996 - 1998	3	Phalon Lake Hatchery				
Spokane River	7,500	1995	1	Trout Lodge Hatchery				
Spokane River	16,886	1995	1	Lyons Ferry Hatchery				
Marshall Creek	628,911	1936-1983	25	Spokane Hatchery				
Deep Creek	24,448	1936-1944	4	Spokane Hatchery				
California Creek	10,000	1936	1	Spokane Hatchery				
Hangman Creek	3,573	1979 -1987	8	Spokane Hatchery				
Cutthroat								
Deep Creek	4,000	1939	1	Spokane Hatchery				
Dragoon Creek	19,000	1936 - 1937	2	Spokane Hatchery				
Little Spokane River and Buck Cr. area	5,116,802	1933 - 1992	36	Spokane Hatchery				
Marshall Creek	82,000	1957	1	Spokane Hatchery				

Table 3. Information for multiplexes and loci including primer concentration, number of alleles in this study, size range (in
 basepairs), observed heterozygosity (Ho), repeat unit size (in basepairs), F_{ST}, F_{IS}, and F_{IT} values (calculated without cutthroat trout, all
 bold values significantly different from zero). References for primer sequences are under Source.

2
4

Multiplex	Anneal T	cycles	Locus	conc [uM]	#alleles	range	Но	repeat	$F_{\rm ST}$	$F_{\rm IS}$	F_{IT}	Source
Omy-B2	55	26	One-102	0.05	34	182-305	0.789	4	0.059	0.049	0.197	Olsen et al. 2000
			<i>One</i> -114	0.05	26	177-280	0.828	4	0.078	0.024	0.192	Olsen et al. 2000
			Ots-100	0.04	26	168-298	0.826	2	0.090	-0.042	0.096	Nelson and Beacham 1999
Omy-C2	55	28	One-101	0.02	25	119-243	0.444	4	0.115	0.098	0.395	Olsen et al. 2000
			One-108	0.02	35	161-337	0.714	4	0.088	0.181	0.298	Olsen et al. 2000
			Ots-103	0.015	9	56-90	0.217	4	0.099	0.029	0.100	Small et al. 1998
Omy-D2	49	25	Omy-77	0.03	22	97-147	0.835	2	0.068	0.056	0.246	Morris et al. 1996
			Ots-1	0.03	22	158-266	0.727	2	0.098	0.014	0.172	Banks et al. 1999
			Ots-3M	0.02	11	132-156	0.573	2	0.088	0.084	0.237	Banks et al. 1999
Omy-E2	62	26	<i>Omm</i> -1070	0.025	42	164-374	0.797	4	0.064	0.127	0.239	Rexroad et al. 2001
			<i>Omm</i> -1130	0.05	57	185-399	0.800	4	0.073	0.042	0.152	Rexroad et al. 2001
			<i>Omy</i> -1011	0.045	21	134-245	0.798	4	0.075	0.056	0.219	Spies <i>et al.</i> 2005
Omy-F2	52	25	<i>Oki</i> -10	0.02	18	92-151	0.796	2	0.095	-0.060	0.123	Smith <i>et al.</i> 1998
			Omy-1001	0.03	30	167-242	0.810	2	0.120	-0.012	0.147	Spies <i>et al.</i> 2005

Table 4. Loci information for each collection: F_{IS} value at each locus, underlined values were significant before Bonferroni correction and bold values significant after correction. 1 2 3

Gr. Spokane	One-102	One-114	Ots-100	One-101	One-108	Ots-103	Omy-77	Ots-1	Ots-3M	Omm-1070	<i>Omm</i> -1130	Omy-1011	<i>Oki</i> -10	Omy-1001
02MidSpok	0.096	0.078	0.032	0.182	0.026	0.076	0.018	0.08	-0.042	0.039	0.072	0.125	-0.003	-0.039
03UpSpok	0.056	0.049	0.012	0.189	0.089	-0.013	-0.053	0.213	-0.008	0.057	0.091	<u>0.316</u>	0.027	-0.015
03MidSpok	0.072	0.113	0.045	-0.126	0.059	-0.013	0.093	0.012	0.044	<u>0.176</u>	0.046	0.149	0.011	0.061
04Coulee	-0.020	-0.027	-0.031	-0.012	0.046	0.010	-0.072	-0.100	-0.114	<u>0.320</u>	0.020	0.101	-0.035	-0.031
04Deep	0.041	0.213	-0.001	0.150	0.106	-0.141	0.018	-0.013	0.004	0.111	-0.023	0.055	-0.017	0.006
04UpDeep	0.013	-0.034	-0.178	0.351	<u>0.436</u>	-0.044	-0.048	0.077	0.099	<u>0.196</u>	0.020	0.053	-0.075	-0.115
04Marshall	0.206	0.057	0.102	0.024	0.268	0.230	0.342	-0.010	0.271	0.013	-0.047	-0.095	-0.108	-0.080
04Calif	0.056	0.046	-0.014	-0.119	0.205	0.110	0.016	<u>0.159</u>	0.019	0.051	0.077	0.143	-0.041	0.171
MSS	0.205	0.337	0.106	-0.048	0.175	-0.034	0.211	<u>0.383</u>	0.222	-0.115	-0.119	0.153	-0.052	0.009
03Indian	-0.033	-0.058	-0.003	0.383	0.059	0.063	0.022	<u>0.560</u>	-0.093	0.197	0.256	0.029	0.055	-0.017
04Indian	0.468	0.042	-0.116	-0.250	0.029	<u>0.508</u>	-0.108	<u>0.416</u>	0.141	0.337	0.207	-0.116	-0.021	-0.054
04Hang	0.118	0.127	-0.032	0.289	0.097	0.000	-0.134	0.119	-0.347	-0.161	0.015	0.111	<u>0.453</u>	-0.134
03UpLSpok	-0.085	0.062	0.030	0.131	0.177	-0.118	0.082	0.052	0.011	0.061	0.093	0.111	0.044	-0.022
03LoLSpok	-0.027	0.109	0.047	0.068	0.064	0.148	0.012	<u>0.100</u>	-0.122	0.726	<u>0.544</u>	0.079	0.089	-0.010
03DartAB	0.014	0.095	-0.101	0.062	<u>0.153</u>	-0.130	0.017	-0.042	0.065	0.231	0.129	0.028	0.081	0.033
03DartBB	0.072	-0.022	-0.032	0.029	0.289	0.118	-0.106	-0.006	0.074	-0.042	0.103	-0.033	-0.092	-0.003
03Dead	<u>0.089</u>	<u>0.076</u>	0.081	0.068	<u>0.195</u>	-0.058	0.062	<u>0.194</u>	0.108	0.256	<u>0.196</u>	0.072	0.065	0.023
03SFDead	-0.049	-0.020	0.093	0.105	<u>0.361</u>	-0.055	-0.139	0.029	0.085	0.154	0.023	0.088	0.078	0.108
03LDeep	-0.130	0.012	0.028	-0.026	<u>0.193</u>	0.310	-0.025	0.102	0.036	0.004	0.087	<u>0.132</u>	<u>0.131</u>	0.028
03NFLDeep	0.079	-0.044	0.218	-0.028	<u>0.434</u>	-0.014	-0.045	0.099	-0.005	0.040	-0.010	0.027	0.006	-0.015
03SFLDeep	0.101	0.082	0.000	-0.152	<u>0.111</u>	-0.009	0.094	0.080	0.039	0.069	0.061	0.052	-0.014	<u>0.117</u>
01Otter	0.081	-0.004	0.047	-0.102	<u>0.273</u>	0.073	0.094	-0.020	<u>0.395</u>	0.054	0.087	-0.094	0.003	0.064
01DeerCr	0.042	0.019	0.038	0.084	0.280	0.198	0.037	-0.059	<u>0.198</u>	0.025	<u>0.110</u>	-0.063	0.032	-0.041
02LilDeer	-0.006	0.023	0.028	0.043	<u>0.371</u>	-0.088	0.064	0.053	0.031	<u>0.185</u>	<u>0.118</u>	-0.084	-0.042	-0.030
01Buck	0.045	-0.049	-0.003	0.042	<u>0.106</u>	-0.065	0.017	-0.061	0.043	<u>0.150</u>	-0.057	0.037	-0.016	0.024
02LoDrag	0.105	0.011	-0.033	0.019	<u>0.172</u>	-0.048	0.060	0.120	-0.036	<u>0.052</u>	<u>0.070</u>	0.062	-0.036	0.082
02WBDrag	-0.150	0.016	-0.029	0.133	<u>0.194</u>	0.045	-0.083	0.029	0.056	<u>0.139</u>	0.040	-0.008	-0.034	-0.153
02UpDrag	-0.077	-0.023	-0.003	-0.017	0.165	0.021	<u>0.191</u>	-0.026	-0.117	0.040	0.123	0.128	-0.114	-0.027
Hatchery														
01PhaHat	0.019	0.013	0.055	0.050	0.084	-0.004	-0.006	0.005	0.040	0.045	0.054	-0.026	-0.036	0.005
02PhaHat	0.078	0.048	0.020	-0.086	0.059	-0.126	0.037	<u>0.296</u>	0.012	0.228	<u>0.098</u>	0.030	-0.033	0.070
04TroutH	-0.013	-0.148	-0.155	0.124	0.115	0.000	0.080	-0.005	0.071	0.074	0.267	0.123	-0.129	-0.043
00SpHat	-0.034	0.043	-0.014	0.021	0.006	0.124	0.004	-0.006	0.020	0.004	-0.062	-0.018	-0.162	-0.106
02LFH	0.061	0.058	0.053	0.032	<u>0.113</u>	-0.085	0.052	<u>0.195</u>	0.007	<u>0.140</u>	<u>0.150</u>	-0.031	NA	0.010
Cutthroat														
03Nehc	-0.206	0.135	0.667	0.047	0.060	0.014	-0.242	0.108	0.064	0.367	0.172	<u>0.692</u>	-0.075	0.103
04Nehc 4	-0.289	-0.059	<u>0.365</u>	<u>0.774</u>	0.042	0.137	0.074	0.003	0.114	0.211	-0.016	0.407	0.021	-0.070

1 Table 5. Pairwise F_{ST} values with collections combined by tributary (see Table 1). Average pairwise F_{ST} values for wild collections

- 2 compared to other wild collections, and hatchery collections compared to only wild collections are under "Avg". Highest average
- 3 value is in bold type. All pairwise values were significantly different from 0 (P < 0.0001).
- 4

	Avg	Hang	Spok	04Coulee	Deep	04Marsh	04Calif	03UpLSpok	03LoLSpok	Dart	Dead	LDeep	01Otter	Deer	01Buck	Drag	PhaH	02LFH	00SpHat	TroutH
Hang	0.0912																			
Spok	0.0962	0.0566																		
04Coulee	0.1647	0.1493	0.1516																	
Deep	0.1102	0.1441	0.1275	0.1753																
04Marsh	0.1459	0.1815	0.1674	0.2387	0.1065															
04Calif	0.1000	0.0606	0.0739	0.1531	0.1480	0.1908														
03UpLSpok	0.1044	0.0899	0.1192	0.1972	0.1248	0.1702	0.1218													
03LoLSpok	0.0591	0.0629	0.0692	0.1439	0.0725	0.1075	0.0622	0.0664												
Dart	0.0859	0.1100	0.1145	0.1844	0.0817	0.1073	0.1110	0.0910	0.0475											
Dead	0.0628	0.0444	0.0580	0.1448	0.0973	0.1391	0.0614	0.0636	0.0279	0.0630										
LDeep	0.0816	0.0686	0.0851	0.1622	0.1164	0.1423	0.0930	0.0955	0.0499	0.0752	0.0360									
01Otter	0.0820	0.0871	0.0940	0.1705	0.0976	0.1459	0.0908	0.0878	0.0415	0.0664	0.0441	0.0676								
Deer	0.0695	0.0516	0.0654	0.1523	0.1156	0.1476	0.0560	0.0853	0.0224	0.0673	0.0194	0.0394	0.0512							
01Buck	0.0740	0.1013	0.0915	0.1673	0.0550	0.0867	0.0996	0.0821	0.0312	0.0364	0.0532	0.0676	0.0609	0.0668						
Drag	0.0623	0.0692	0.0725	0.1448	0.0802	0.1109	0.0774	0.0667	0.0228	0.0464	0.0271	0.0437	0.0423	0.0320	0.0362					
PhaH	0.0590	0.0566	0.0718	0.1371	0.0695	0.1048	0.0655	0.0608	0.0218	0.0523	0.0309	0.0556	0.0491	0.0397	0.0392	0.0301				
02LFH	0.0734	0.0546	0.0890	0.1460	0.1052	0.1431	0.0738	0.0693	0.0431	0.0742	0.0360	0.0613	0.0576	0.0405	0.0662	0.0417	0.0336			
00SpHat	0.1440	0.1868	0.1879	0.2336	0.1258	0.1616	0.1811	0.1357	0.1078	0.0982	0.1280	0.1436	0.1288	0.1436	0.0951	0.1019	0.1084	0.1465		
TroutH	0.1573	0.2011	0.1791	0.2668	0.1128	0.1388	0.2048	0.1796	0.1191	0.1163	0.1492	0.1628	0.1580	0.1663	0.0853	0.1247	0.1277	0.1623	0.1769	

Table 6. Bayesian analysis of cutthroat-rainbow hybridization (clusters set at 2), and redband-coastal hatchery introgression (clusters set at 3). Values above 25% are in bold 4

type.

	1	2		1	2	3	n
03UpSpok	0.972	0.028	03UpSpok	0.011	0.027	0.963	67
03MidSpok	0.996	0.004	03MidSpok	0.037	0.005	0.959	92
02MidSpok	0.996	0.004	02MidSpok	0.171	0.004	0.825	47
03UpLSpok	0.996	0.004	03UpLSpok	0.183	0.005	0.813	39
03LoLSpok	0.996	0.004	03LoLSpok	0.387	0.005	0.608	62
03DartAB	0.998	0.002	03DartAB	0.450	0.002	0.548	51
03DartBB	0.998	0.002	03DartBB	0.508	0.002	0.489	29
03Dead	0.998	0.002	03Dead	0.138	0.003	0.859	100
03SFDead	0.997	0.003	03SFDead	0.026	0.002	0.971	49
03LDeep	0.998	0.002	03LDeep	0.144	0.003	0.853	50
03NFLDeep	0.998	0.002	03NFLDeep	0.016	0.002	0.982	50
03SFLDeep	0.998	0.002	03SFLDeep	0.023	0.003	0.975	60
01Otter	0.988	0.012	01Otter	0.059	0.009	0.932	50
01DeerCr	0.991	0.009	01DeerCr	0.061	0.009	0.930	100
02LilDeer	0.996	0.004	02LilDeer	0.023	0.004	0.973	50
01Buck	0.996	0.004	01Buck	0.750	0.005	0.245	50
02LoDrag	0.996	0.004	02LoDrag	0.267	0.004	0.729	100
02WBDrag	0.996	0.004	02WBDrag	0.178	0.004	0.818	50
02UpDrag	0.997	0.003	02UpDrag	0.129	0.003	0.868	50
04Deep	0.997	0.003	04Deep	0.981	0.003	0.016	50
04UpDeep	0.995	0.005	04UpDeep	0.983	0.004	0.014	50
04Coulee	0.998	0.002	04Coulee	0.143	0.003	0.855	50
04Calif	0.998	0.002	04Calif	0.075	0.003	0.923	49
04Marsh	0.998	0.002	04Marsh	0.970	0.002	0.028	50
AllIndian	0.989	0.011	AllIndian	0.005	0.009	0.985	67
03Nehchen	0.025	0.975	03Nehchen	0.004	0.971	0.025	61
04Nehchen	0.003	0.997	04Nehchen	0.004	0.991	0.005	37
MSS	0.998	0.002	MSS	0.003	0.002	0.995	33
03Martin	0.996	0.004	03Martin	0.009	0.004	0.987	13
00SpHat	0.997	0.003	00SpHat	0.993	0.003	0.005	100
01Gold	0.997	0.003	01Gold	0.987	0.003	0.010	48
01Eell	0.997	0.003	01Eell	0.993	0.002	0.005	89
02STac	0.997	0.003	02STac	0.988	0.002	0.010	50
TroutH	0.997	0.003	TroutH	0.991	0.004	0.005	49
02LFH	0.994	0.006	02LFH	0.012	0.005	0.982	100
01PhaHat	0.996	0.004	01PhaHat	0.295	0.005	0.700	100
02PhaHat	0.995	0.005	02PhaHat	0.020	0.006	0.973	100
02SullCr	0.007	0.993	02SullCr	0.004	0.990	0.006	96
03SullLk	0.118	0.882	03SullLk	0.059	0.871	0.070	34
03GoldCr	0.019	0.981	03GoldCr	0.022	0.973	0.005	42

Table 7. Bayesian analysis of shared ancestry in pairwise tests comparing a subset of wild-origin rainbow trout collections from the Spokane River and Spokane Hatchery

3 4 5 6

- rainbow trout.

	1	2	n
00SpHat	0.005	0.995	100
04Marsh	0.995	0.005	50
00SnHat	0.014	0 986	100
01Buck	0.988	0.012	50
00SpHat	0.008	0.992	100
04Deep	0.991	0.009	50
04UpDeep	0.995	0.005	50
00SpHat	0.007	0.993	100
Drag	0.988	0.012	200
00SpHat	0.008	0.992	100
03DartAB	0.994	0.006	51
03DartBB	0.987	0.013	29
Spok	0 014	0.986	100
03LoLSpok	0.991	0.009	62
00SnHat	0.004	0 996	100
01Otter	0.004	0.005	50
UTOllei	0.990	0.005	50
00SpHat	0.003	0.997	100
04Coulee	0.993	0.007	50

Table 8. Maximum likelihood assignment test results with collections combined by tributary (see Table 1). Columns show the number of fish from a single collection assigned to baseline collections. Positive, unambiguous assignments (100 times more likely 2 3 than assignment to another collection, no bracket around number) are followed by positive, ambiguous assignments (highest assignment likelihood but less than 100 times more likely) in brackets. Fish assigned back to origin are along the diagonal. Total 4 5 number of fish in the baseline collection is in "total" row, number of correct assignments (unambiguous combined with ambiguous) is in "correct" row, and percentage of correct assignments is in "% correct" row. Abbreviations follow Table 1.

	Hang	Spok	04Coulee	04Deep	04MarCr	04Calif	03UpLSpok	03LoLSpok	Dart	03Dead	03LDeep	01Otter	01DeerCr	01Buck	Drag	00SpHat	01PhaHat	t 02LFH	TroutH
Hang	105 (7)																		
Spok		188 (1)				(1)		(1)											
04Coulee		1	49	1					(1)										
04Deep		7 (2)	(1)	99							1(1)								
04MarCr					50														
04Calif		(1)				45(2)													
03UpLSpok							39										(1)		
03LoLSpok		(2)						38 (10)		3 (4)	(3)		(2)		(2)		(2)		
Dart								2	76 (2)										
03Dead										104 (20)	(3)		(1)						
03LDeep	(1)							1(1)		4 (5)	129 (21)				(2)				
01Otter												49			(1)				
01DeerCr		(1)						2 (5)		(1)			114 (31)		6 (3)				
01Buck								(1)		(2)	(1)		(1)	47 (3)	(1)				
Drag		(3)				(1)			(1)	(3)	(1)	(1)	(1)		169 (16)				
00SpHat																100			
01PhaHat								(1)		(3)							90 (7)		
02LFH																		99 (1)	
TroutH																			49
total	113	206	50	100	50	49	39	62	80	149	160	49	150	50	200	100	100	100	49
correct	112	189	49	99	50	47	39	48	78	124	150	50	145	50	185	100	97	100	49
% correct	99.12	91.75	98.00	99.00	100.00	95.92	100.00	77.42	97.50	83.22	93.75	102.04	96.67	100.00	92.50	100.00	97.00	100.00	100.00

1	Figure 1. Map of Spokane River drainage showing tributaries where collections
2	originated. Waterfalls are indicated by river kilometers in boxes. Man-made barriers and
3	dry creek bed locations are designated approximately with triangles (Dartford Cr. barrier
4	not shown). Filled circle marks the location of Spokane Hatchery. Map was constructed
5	by Jim Shaklee (WDFW). City of Spokane (118°40'W; 47°50'N) is shaded with grey
6	color.
7	
8	Figure 2. Consensus neighbor joining tree of Cavalli-Sforza and Edwards genetic chord
9	distances (1967) among rainbow and cutthroat collections from Spokane and Pend
10	Oreille drainages and hatcheries. Numbers at the nodes indicate the percentage (greater
11	than 60%) of 10,000 trees in which collections beyond the nodes grouped together.
12	
13	Figure 3. Multidimensional scaling analysis plot of Cavalli-Sforza and Edwards
14	distances (1967) among hatchery collections and combined rainbow trout collections
15	from the Spokane drainage.

Figure 2.

