Fine-scale population structure of rainbow trout (Oncorhynchus mykiss) in the Spokane River drainage in relation to hatchery stocking and barriers

Maureen P. Small ${ }^{1} \S$, Jason G. McLellan ${ }^{2}$, Janet Loxterman ${ }^{1,3}$, Jennifer Von Bargen ${ }^{1}$, Alice Frye ${ }^{1}$, and Cherril Bowman ${ }^{1}$
${ }^{1}$ Washington Department of Fish and Wildlife, Conservation Biology Unit, Genetics Lab
${ }^{2}$ Washington Department of Fish and Wildlife, Spokane Office
${ }^{3}$ Biology Department, Idaho State University, Pocatello, ID

§ corresponding author, 600 Capitol Way N, Olympia, WA 98501, phone 360-902-2682, fax 360-902-2943, email: smallmps@dfw.wa.gov
${ }^{2}$ WDFW, 2315 N Discovery Place, Spokane Valley, WA 99216, email:
mcleljgm@dfw.wa.gov
${ }^{3}$ Biological Sciences, ISU, Pocatello, ID 83209, email: loxtjane@isu.edu
Jennifer Von Bargen email: vonbajfv@dfw.wa.gov
Alice Frye email: pichaaep@dfw.wa.gov
Cherril Bowman email: bowmacmb@dfw.wa.gov

Abstract

We examined population structure in rainbow trout (Oncorhynchus mykiss) collected from 20 tributaries and three mainstems in the greater Spokane River drainage using 13 microsatellite loci. Populations displayed some excess homozygosity and linkage disequilibrium, which was more pronounced in upper tributary collections and likely the result of small effective population sizes or structuring within tributaries. In general, population structure followed geographic structure: collections from creeks within sub-drainages were most closely related and collections from different tributaries were genetically distinct. Comparisons to cutthroat trout (O. clarki) indicated little to no introgression. Comparisons to steelhead, coastal, and inland rainbow trout from hatcheries suggested introgression by hatchery fish into some wild populations. Introgression was suspected in populations from stocked tributaries and where the tributary lacked barriers to escaped hatchery fish. Populations from tributaries above barriers that had not been stocked were genetically distinct from hatchery fish and appeared to be native inland redband rainbow trout.

Introduction: Effective fisheries management is based upon an understanding of population structure, usually a complex reflection of historical processes, geography and life history (Small et al. 1998; McCusker et al. 2000; Spidle et al. 2003; Spruell et al. 2003). Historically, tributaries in the Pacific Northwest were recolonized following glacial retreat, with population structure reflecting common founders (Small et al. 1998, McCusker et al. 2000). Since salmonids home to their natal stream for breeding, genetic structure is often organized upon geographic structure of drainages (McCusker et al. 2000, Taylor et al. 2003). As some amount of straying naturally occurs within drainages and to a lesser extent among drainages within the same region, population structure generally follows a hierarchy of regional structure with populations more closely related in nearby drainages (Hansen and Mensberg 1998; Spruell et al. 2003; Taylor et al. 2003). In addition to natural movement, fisheries managers move trout among drainages and among regions, potentially altering genetic structure. Hatchery introductions have mixed impacts upon wild populations: salmonids are regionally adapted (Taylor 1991) and hatchery fish, often of non-local origin, may lack characteristics allowing them to succeed in regions different from their origins or to succeed under natural conditions (Currens et al. 1990; Hindar et al. 1991; Williams et al. 1996; Reisenbichler and Rubin 1999; Hansen et al. 2001; Weber and Fausch 2003; McGinnity et al. 2004).

Anthropogenic barriers to fish movement also impact population structure (Neraas and Spruell 2001; Van Houdt et al. 2005). Dams, culverts or periodic loss of flow within a waterway from land-use practices that prevent fish from moving throughout drainages may affect gene flow and biodiversity patterns (Taylor et al. 2003), and lead to smaller effective population sizes. Natural barriers such as historic dry channels or waterfalls
arising from tectonic processes similarly influence fish movement (Currens et al. 1990), but might leave a different genetic signature where barriers predated humans. Salmonid management is based partly upon understanding the relative roles of natural and anthropogenic influences on salmonid ecology as reflected in population genetic structure.

In this study, population genetic structure was investigated in rainbow trout occupying tributaries of the Spokane and Little Spokane rivers in eastern Washington State (Figure 1) using microsatellite DNA. We tested the hypothesis that hatchery fish planted in the system over the past century had displaced or introgressed into native populations and examined the influence of natural and anthropogenic barriers on putative native population structure. Native inland "redband" rainbow trout (Oncorhynchus mykiss gairdneri), both anadromous (steelhead) and resident forms, were once abundant. Dam construction in the early 1900s on the Spokane River (Figure 1) eliminated the anadromous form but native resident populations may still persist in unstocked tributaries isolated by barriers. To mitigate for dam construction, hatchery rainbow trout and hatchery cutthroat trout (O. clarki) were stocked throughout the drainage starting in the early 1900s. Hatchery rainbow trout were primarily coastal rainbow trout (O. mykiss irideus) but also included some inland redband rainbow trout, (inland rainbow trout are distinguished morphologically from coastal rainbow trout by a red lateral stripe and primitive taxonomic structures (Currens et al. 1990), genetically by differences at allozyme loci (Currens 1997) and ecologically by adaptations to inland environments (Currens 1997)). Stocking efforts varied by tributary and were based upon availability
of lakes, habitat quality and potential for recreational opportunities. We found that hatchery fish had introgressed into native populations in tributaries with hatchery stocking and in unstocked tributaries below barriers that were exposed to escaped hatchery fish. Unstocked tributaries above barriers appeared to be native inland redband rainbow trout. Thus, although barriers disrupted connectivity among rainbow trout populations, barriers also served to protect native diversity.

Materials and methods:

Area geography

The Spokane River system is a low gradient drainage underlain by a large aquifer maintained by snow-melt and rainwater. Although only upper headwaters were within Pleistocene glacial margins, glacial Lake Spokane covered part of the drainage and part of the area was scoured during the Great Spokane flood around 18,000 years before present (USGS 2006). In addition to waterfalls from tectonic and glacial activity, and man-made barriers (culverts, dams, high sediment load), movement of fish among tributaries is restricted by availability of water since in many creeks some portion is dry for at least part of the year. Although springs throughout the drainage provide high quality water and thermal refugia, water availability and quality in some tributaries has declined dramatically over the past century as riparian plants were removed and road building, mining, timber harvest and agriculture diverted groundwater and increased water temperature, sedimentation and pollution (Bruce Kinkead, tribal biologist, Coeur d'Alene Tribe, pers. comm.).

Samples and area history
Samples of adult fish fin tissue were obtained non-lethally by backpack electrofishing in a stratified random sampling design (10 fish per 100 m blocked section). Rainbow trout samples were collected 2001 through 2004 from 21 tributaries and the mainstem of the Spokane (356 fish) and Little Spokane (940 fish) rivers and Hangman Creek (206 rainbow and 108 cutthroat; Figure 1, Table 1). In most tributaries with barriers, samples were collected above barriers (Table 1). Some barriers were complete and one-way (eg. Spokane Falls), others were incomplete (eg. culvert surmountable under high flow) and others were absent under rare conditions (eg. 5.5 km of dry creek bed in each of Coulee and Deep creeks flows only in years of high snowfall). In Dartford Cr., samples were gathered above and below a culvert about 200 m from the creek mouth.

Historically, inland resident (redband rainbow) and anadromous (steelhead) rainbow trout were throughout the system and cutthroat trout were only above Spokane Falls (Behnke 1992). Hatchery rainbow trout have been planted since the early 1900's. Most fish originated at the Spokane Hatchery (Figure 1, Table 2), which maintains a coastal rainbow trout broodstock from McCloud River, CA (Crawford 1979; Busack and Gall 1980; Nielsen et al. 1999; 96 fish sample included). Other hatchery rainbow trout planted included Trout Lodge Inc. Hatchery (private hatchery, broodstock origin unknown, 49 fish sample), and Phalon Lake Conservation stock (Phalon Lake), an inland redband rainbow stock from Kettle River 100 km north of Spokane River. The Phalon Lake stock was reconstructed in 2002 and we included samples from 2001 and 2002 (200 fish). Some Trout Lodge fish were planted by landowners and some escaped from ponds
in upper Deep Cr. (Jason McLellan, WDFW, unpublished data). Three coastal rainbow trout hatchery stocks, Goldendale, Eells Springs and South Tacoma (McCloud River origin with additional components), while not planted into the system or part of the study, were included in the cluster analyses to strengthen the examination of relationships between wild-origin inland rainbow trout and hatchery-origin coastal rainbow trout. Some Lyons Ferry Hatchery steelhead (native anadromous inland rainbow trout, broodstock origin mainly in upper Columbia River; Bumgarner et al. 2003), were also planted (100 fish included). Introgression by hatchery rainbow trout might be detected as clustering with the hatchery sample rather than with populations from nearby tributaries and by coastal ancestry signals in inland populations.

Hatchery cutthroat trout, planted less extensively (Table 2), were King's Lake broodstock from the Pend Oreille drainage. Nehchen Cr. received at least unofficial one cutthroat infusion around 20 years ago when a landowner brought in fish following dewatering of the creek (Bruce Kinkead, Coeur d'Alene Tribal Biologist, pers. comm.). Two Nehchen Cr. samples (102 fish) were included to determine if fish were cutthroat trout rather than rainbow trout (redband rainbow have markings similar to cutthroat, Behnke 1992). We compared all samples in the study to three cutthroat trout samples from the Pend Oreille drainage that had been collected for another study, (Sullivan Lake, Sullivan Cr., and Gold Cr.), to identify potential cutthroat trout and possible hybrids. Prior to stocking (and introduction) cutthroat trout were only present above Spokane Falls. Cutthroat and rainbow trout may hybridize, but naturally occupy different portions of a tributary (Allendorf et al. 2001; Marshall et al. 2006). Fish may be forced into proximity and thus
hybridize if hatchery cutthroat trout are introduced into a rainbow-occupied tributary with limited habitat.

Sample processing
DNA from 1502 wild-origin rainbow trout, 445 hatchery rainbow trout and 102 wildorigin cutthroat trout was extracted using a chelex protocol (Small et al. 1998).

Microsatellite alleles at 14 loci were PCR-amplified using fluorescently labeled primers (see Table 3 for detailed PCR information). PCR's were conducted on an MJResearch PTC-200 thermocycler in 96 well plates in 5μ l volumes employing 1μ template with final concentrations of $1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 200 \mu \mathrm{M}$ of each dNTP, 1X Promega PCR buffer, and 0.01 U Taq polymerase. After initial three minute denature at $92^{\circ}, 33$ cycles consisting of 92° for 15 seconds, annealing (temperature in Table 3) for 30 seconds, extension at 72° for 60 seconds were followed by a 30 minute extension at 72°. Samples were run on ABI 3100 and 3730 automated sequencers and alleles were sized (to base pairs) and binned using an internal lane size standard (GS500Liz from Applied Biosystems) and Genemapper software (Applied Biosystems). A subsample was run on both sequencer platforms to standardize allele mobilities.

Within collection data analysis
Statistical tests were conducted on loci and samples from each collection site to assess conformation to Hardy Weinberg expectations (Hardy Weinberg equilibrium, HWE), and genotypic heterogeneity using GENEPOP version 3.3 (Raymond and Rousset 1995) with 100 batches and 2,000 iterations. Loci were examined for large allele drop-out, null
alleles and scoring errors using MICROCHECKER (Van Oosterhout et al. 2004). We used FSTAT 2.9.3 (Goudet 2001) to calculate $F_{\text {IS }}$ values and their significance for each locus in each collection (350,000 randomizations), and calculate Weir and Cockerham's (1984) estimators of Wright's F statistics (F, Θ, and f, hereafter referred to as $F_{\mathrm{IS}}, F_{\mathrm{IT}}$, and F_{ST}) and their jackknife intervals over all loci. Linkage disequilibrium was assessed using GENEPOP with 200 batches and 3,000 iterations. Allelic richness was calculated using rarefaction as implemented in HP-RARE v1.4 (Kalinowski 2004), and based upon permutation of 50 alleles. Populations were tested for population bottleneck signals using BOTTLENECK (Piry et al. 1998). Gene diversity (Nei 1987) was calculated using FSTAT.

Between collection data analysis
Partitioning of molecular variance was explored using AMOVA tests (analysis of molecular variance, Excoffier et al. 1992) implemented in ARLEQUIN 2.000 (Schneider et al. 2001) with collections organized by tributary. We conducted an assignment test using GENECLASS2 (Cornuet et al. 1999) to examine the likelihood that, based upon the genotype of the fish and allele frequencies in collections, an individual fish originated in the population or tributary where it was sampled. We used the Rannula and Mountain (1997) option, with collections grouped by tributary. A Bayesian analysis implemented in STRUCTURE 2.1 (Pritchard et al. 2000) was used to assess hybridization between rainbow and cutthroat trout, to examine introgression by hatchery rainbow trout into native populations, and to estimate individual ancestry. In initial analyses, all collections (cutthroat, hatchery and wild-origin rainbow trout) were included with K (number of
clusters or possible populations) set from 2 to 30 . With $\mathrm{K}=2$, we hypothesized that the data set would divide into cutthroat and rainbow trout, with possible hybrid individuals sharing ancestry in both groups. With $\mathrm{K}=3$, we hypothesized that the rainbow trout cluster would divide into coastal and inland redband rainbow trout, also with hybrid individuals sharing ancestry in both groups. With $\mathrm{K}>3$ we expected population structure to emerge. Initial analyses with $\mathrm{K}=2$ to 5 were conducted in 10 independent runs allowing admixture with 50,000 burn-ins and $1,000,000$ iterations. Due to computational intensity, only single runs (50,000 burn-ins and 1,000,000 iterations) were conducted for $\mathrm{K}=6$ to 30 . After identifying collections with possible hatchery introgression ($>25 \%$ average ancestry in the cluster occupied by Spokane Hatchery collection), we conducted pairwise tests with introgressed collections and the Spokane Hatchery collection with $K=2$, to look more closely at introgression (10 runs, 50,000 burn-ins, $1,000,000$ iterations). Other pairwise tests were employed to examine relationships among collections: collections were tested for heterogeneity in genotypic distributions at each locus and across all loci using GENEPOP with 300 batches and 3,000 iterations. To examine the magnitude of differentiation between populations and between tributary groups, pairwise $F_{\text {ST }}$ values and their significance were evaluated using FSTAT with 100,000 permutations. All test results were adjusted for multiple comparisons using sequential Bonferroni corrections.

Genetic relationships among collections were also explored with cluster analyses. Population allele frequencies were generated from genotypic data using CONVERT 1.3 (Glaubitz 2004). Pairwise chord distances (Cavalli-Sforza and Edwards, 1967) among
collections were calculated from allele frequencies using GENDIST in PHYLIP 3.5c (Felsenstein 1993). We used geometric distance since fluctuation in population sizes should increase the impact of drift relative to mutation. Chord distances were plotted in a neighbor-joining (NJ) tree using PHYLIP. To test the repeatability of NJ tree branching, the allele frequency file was bootstrapped 10,000 times across loci using SEQBOOT. Tree topologies were created for replicates with NEIGHBOR, and a consensus tree was generated using CONSENSE and plotted with TREEVIEW 1.6.6 (Page 2001). Chord distances were also plotted in a multidimensional scaling analysis using NTSYSpc version 2.02j (Rohlf 1993) to view relationships among collections in the absence of dendrogram architecture.

Results:

PCR amplifications at some loci were less successful for cutthroat trout than rainbow trout (average missing loci per individual genotype $=4$ vs 2 , respectively), particularly at One-102, One-108, Ots-100, Ots-1, Omm-1130, Omy-1001, and Omy-1011. Cutthroat trout generally had significant homozygosity at these loci (Table 4). In individual locus tests, 39 out of 462 (14 loci x 33 collections, excluding cutthroat) total $F_{\text {IS }}$ tests were significant for excess homozygosity (Table 4 , adjusted alpha, $0.05 / 462=0.0001$). Twelve of the significant excesses occurred at One-108 and MICROCHECKER suggested a null allele, so this locus was excluded from further analyses.

MICROCHECKER indicated a possible null allele at Omm-1130, but since there were only five significant homozygote excesses at this locus and population HWE significance
values were unchanged when Omm-1130 was removed (data not shown), we left this locus in the analysis. In global tests, one third of collections (after removing One-108, Table 1) were out of HWE for homozygote excess, and $F_{\text {IT }}$ values (Table 3) indicated significant deficits of heterozygotes at all loci. Average $F_{\text {IS }}$ values were higher in above barrier populations than below barrier populations (0.061 and 0.038 , respectively), but were not significantly different $(P=0.06$, FSTAT group comparison, 1000 permutations). $F_{\text {ST }}$ values indicated significant variance among populations at all loci (Table 3).

Positive $F_{\text {IS }}$ values and disequilibrium suggested that collections contained offspring from matings among close relatives (inbreeding) within populations or that collections contained admixtures of trout from different breeding groups. To study this further, wildorigin rainbow trout collections were examined for family groups and relationships with IDENTIX (Belkhir et al. 2002). In the Deadman Cr. collection, the first nine individuals collected appeared to be siblings (all Q values >0.35): Queller and Goodnight's (1989) relatedness value $\mathrm{Q}=0.25$ for half-sibs and 0.5 for full-sibs. In the California Cr . collection, five individuals appeared to be full sibs. Mean relatedness values for Nehchen, Coulee, and Dartford creeks (above barrier) were in the top 5\% of a random distribution of 500 permuted values. However, all but the Buck Cr. sample had significantly high variance in pairwise relatedness values among individuals, suggesting related groups within most samples (Belkhir et al. 2002). Further, some pairwise relatedness values suggested that half-sib relationships (offspring of mating among relatives) increased in collections from further up drainages (e.g. Lower Spokane $=2 \%$
half sibs, Middle Spokane $=3.8 \%$ half sibs and Upper Spokane $=5.2 \%$ half sibs) . Relatedness values were higher in above barrier collections than in below barrier collections (-0.079 and -0.129 , respectively), and the differences were on the edge of significance ($P=0.05$, FSTAT group test, 1000 permutations). In collections from headwaters and regions isolated above barriers, population sizes may have been restricted by available habitat, fostering mating among relatives and decreasing heterozygosity through inbreeding (Castric et al. 2002). In streams with intermittent good habitat, collections may have included breeding groups associated with habitat patches, which would decrease overall heterozygosity in a Wahlund-type effect (Castric et al. 2002). Thus, although sampling followed a randomized design, some samples contained nonrandom components or related individuals.

In other examinations, loci were tested for linkage in pairwise genotypic disequilibrium tests. Several collections had one to three pairs of loci (out of 78 possible pairs per population after One-108 was removed) in linkage disequilibrium, with a high of 9 in California Cr. (Table 1). After removing four of five siblings in the California Cr . collection, only one locus pair was linked. No locus pair was linked in more than three populations. Omm-1130 was involved in 11/29 linkages (8/21 after California Cr. siblings removed).

Among wild collections, allelic richness was highest in lower Little Spokane River and lowest in Coulee Cr. (Table 1). Allelic diversity was lower but not significantly different in collections from upper portions and smaller branches of tributaries (9.2 in above
barrier collections vs 10.2 in below barrier collections, $P=0.056$ from FSTAT group comparison, 1000 permutations) suggesting smaller effective population sizes or fewer founders in above barrier collections. Bottleneck tests conducted under the infinite allele model also supported recent reduction in population sizes in several collections (Table 1). Gene diversity generally concurred with other diversity measures: collections with higher allelic richness had higher gene diversity. Six alleles at various loci were absent from coastal hatchery collections (Spokane and Trout Lodge hatcheries) and present at intermediate frequency (4-9\%) in suspected introgressed collections and present at high frequency (15-28\%) in suspected pure redband rainbow trout collections. Sixteen alleles at various loci were found at high frequencies in coastal hatchery collections, intermediate frequencies in suspected introgressed collections, and low frequencies in suspected pure redband rainbow trout collections. Coastal hatcheries had no private alleles, Phalon Lake had 16 private alleles, and Lyons Ferry Hatchery had 10 private alleles. All alleles in coastal hatchery collections were found in wild-origin collections, although sometimes at very low frequencies (eg. 26% in Spokane Hatchery vs 0.4% in wild). Two hundred and sixteen alleles present in redband rainbow trout collections (wild or hatchery) were absent in coastal hatchery collections.

Pairwise (not shown) and global F_{ST} values (overall $F_{\mathrm{ST}}=0.080$, excluding cutthroat trout and hatchery collections) were all significantly different from 0 (pairwise test adjusted alpha $=0.05 / 300=0.000167)$ except within the following tributaries: Deer and Little Deer creeks, upper and lower Deep Creek, Dartford Cr. above and below barrier, 2002 and 2003 middle Spokane River, and 2003 Indian and 2004 Indian from upper

Hangman (other Hangman collections were too small for statistical tests). Pairwise genotypic test results (not shown) were similar to pairwise $F_{\text {ST }}$ test with one additional non-significant comparison, Little Deep and South Fork Little Deep creeks. Populations occupying tributaries within the greater Spokane drainage were thus genetically differentiated from each other and distinct from hatchery rainbow trout and steelhead.

AMOVA results supported pooling samples by tributary. Although significant variation was partitioned within tributaries $(3.21 \%, P<0.001)$, more variation was found among tributaries $(5.51 \%, P<0.001)$. In pairwise F_{ST} tests with collections grouped by tributary, all values were significantly different from 0 (Table 5). Coulee Cr., unstocked and isolated above a dry creek bed, was highly differentiated from other collections (see average and individual values in Table 5). Deep Cr., also isolated by a dry creek bed but exposed to hatchery escapees from ponds in upper Deep Cr. and limited stocking, was genetically closer to other collections impacted by hatchery fish through stocking or escapees: Buck and Dartford creeks and lower Little Spokane River.

The topology of the consensus neighbor-joining tree and bootstrap support illustrated associations among collections within tributaries (Figure 2). Tributary collections formed branches with at least 98% bootstrap support. Collections from lower portions of tributaries (eg. middle Spokane River) had shorter branch lengths indicating less distinction, possibly due to one-way gene flow from upper tributaries and straying from other tributaries. Cutthroat trout and Nehchen Cr. collections formed a branch with 100% bootstrap support, indicating that Nehchen Cr. fish were cutthroat trout. Coastal
hatchery collections occupied a branch, which included Trout Lodge Hatchery, Marshall Cr., and Deep Cr. collections with 64% bootstrap support (Figure 2), indicating a coastal origin for Trout Lodge broodstock and possible hatchery introgression in Marshall and Deep creek populations. In a consensus tree with combined collections (not shown), the Buck and Dartford creek collections also joined the hatchery branch with 75% bootstrap support, also suggesting hatchery introgression into these collections. In a multidimensional scaling plot employing combined collections (Figure 3), the first axis was defined by Trout Lodge and Spokane Hatchery on the far left and Lyons Ferry Hatchery on the far right, with the Marshall, Dartford, Buck and Deep creek collections on the coastal hatchery side and putative native inland redband rainbow trout collections and Phalon Lake on the Lyons Ferry Hatchery side. The first axis appears to show a genetic gradient from coastal to introgressed inland rainbow to inland rainbow and steelhead collections (Figure 3).

Hybridization with cutthroat trout and introgression by hatchery fish were estimated with a Bayesian analysis. When the number of hypothetical populations (K) was set at 2, cutthroat trout and Nehchen Cr. occupied one cluster and coastal and inland rainbow trout collections occupied the other cluster, with an average 3% or less cutthroat ancestry in each rainbow trout collection (Table 6). Three individual fish (individual data not shown) from upper Spokane appeared to be cutthroat-rainbow hybrids (10-30\% ancestry in cutthroat trout cluster) and one was a possible cutthroat trout (90% ancestry in cutthroat trout cluster). With $\mathrm{K}=3$ (Table 6), rainbow trout collections divided: inland redband rainbow trout collections occupied a cluster that included Lyons Ferry Hatchery
and Phalon Lake, and coastal hatchery groups occupied a cluster that included substantial portions ($>25 \%$) of some inland redband rainbow trout collections that had been stocked with hatchery fish over several years (lower Little Spokane River, Buck, Deep (additional pond escapes), Dragoon, and Marshall creeks). Collections from above barriers in tributaries with single or few stockings (Otter, Deer, Coulee creeks, and Upper Little Spokane River) shared modest ancestry ($6-18 \%$) with coastal hatchery fish. Collections from below barriers that were stocked once or possibly exposed to hatchery strays (California, Little Deep, West Branch Dragoon and Upper Dragoon creeks) also shared modest ancestry ($13-18 \%$) with the coastal hatchery cluster. The mouth of Dartford Cr. was a kilometer below the Spokane Hatchery outfall, and collections from below and above the culvert (semi-permeable barrier) shared around 50% ancestry with coastal hatchery fish. Collections from unstocked tributaries above barriers (all Hangman tributaries, South Fork Deadman, North and South Fork Little Deep, and Little Deer creeks) had less than 3% ancestry in the coastal hatchery cluster. The 2001 and 2002 Phalon Lake collections shared 30% and 2% ancestry with coastal hatchery fish, respectively: Phalon Lake broodstock was suspected of contamination with coastal hatchery fish and was reconstructed in 2002. In analyses with $\mathrm{K}=4$ (all collections included), Spokane Hatchery and coastal hatchery collections moved into their own cluster (data not shown). With increased K, tributary groups and then single collections eventually occupied predominantly single clusters, and some collections subdivided among multiple clusters (data not shown).

We conducted further STRUCTURE analyses with suspected introgressed collections (> 25% coastal ancestry) paired with the Spokane Hatchery collection with $\mathrm{K}=2$ (Table 7). In these analyses inland collections shared less than 2\% Spokane Hatchery ancestry. Individual fish admixture values indicated that 1% of wild-origin inland redband rainbow individuals shared more than 10% ancestry with the Spokane Hatchery collection (7/642 fish, average coastal ancestry within these 7 fish $=19 \%$, highest $=37 \%$).

In maximum likelihood assignment tests, assignments were classified as positive and unambiguous if the assignment was 100 times more likely than the next most likely assignment, and positive but ambiguous when the assignment was less than 100 times more likely. Most fish were assigned unambiguously to their tributary of origin (Table 8). Misassigned fish (fish not assigning to collection of origin) may be strays coming down out of tributaries into the Spokane and Little Spokane rivers, or fish moving among tributaries in Deadman, Little Deep and Dragoon creeks. A few fish were ambiguously misassigned between 01Phalon Lake and wild-origin rainbow collections. Since few Phalon Lake fish were planted in the system, this may reflect shared common ancestry rather than introgression. Spokane and Trout Lodge hatcheries had 100\% correct assignment and no wild-origin fish were assigned to hatchery collections, suggesting low impact on native populations.

Discussion:

Introgression by hatchery rainbow trout
This study explored the population structure of wild rainbow trout populations in the greater Spokane River drainage and assessed whether hatchery fish planted throughout the system over the past 100 years had introgressed into native populations. Since we lacked genetic data for native populations prior to hatchery supplementation, we compared gene pools of wild spawning populations to gene pools maintained in hatcheries and introduced into the system within the past 60 years. A coastal strain of rainbow trout was the most extensively planted hatchery fish. Introgression by coastal hatchery rainbow trout was indicated in collections exposed to hatchery fish through escapees and planting (lower Little Spokane River, Buck, Marshall, Deep, and Dartford creeks). We suspected hatchery introgression because these collections were on the coastal branch in the neighbor-joining tree and the coastal side of the first axis in the multidimensional scaling analysis and appeared to share coastal ancestry in the largescale Bayesian analysis. However, in contrast to other studies where some wild-origin fish assigned to hatcheries after several years of stocking (Fritzner et al. 2001; Hansen et al. 2001; Spidle et al. 2003), assignment tests suggested that hatchery impact was not as strong as might be expected. Further, other hatchery introgression studies demonstrated admixture in wild-origin individuals (Hansen 2002, Sušnik et al. 2004), whereas our pairwise analyses with hatchery and introgressed wild-origin indicated that wild collections shared little ancestry with hatchery collections and few individuals appeared admixed. We hypothesized that in inland redband rainbow trout populations exposed to coastal-origin hatchery rainbow, introgression shifted these gene pools away from the
native inland redband rainbow trout gene pool but not to the point where the individual identity of a population was compromised.

Hatchery fish have not replaced wild fish in any collection examined. All wild-origin gene pools had alleles absent from the hatchery gene pool and wild fish remain genetically distinct from hatchery fish (Table 5). All alleles in coastal-origin hatchery fish were found in inland collections, supporting introgression into inland populations: several alleles at high frequency in coastal hatchery fish were at intermediate frequency in suspected introgressed populations and at low frequency in populations unexposed to hatchery fish. Genetic drift may have eliminated some coastal-type allelic diversity during 60 years of hatchery rearing. It is unlikely that associations between wild and hatchery fish arose from native inland redband rainbow trout entering hatchery gene pools since other coastal hatchery collections clustered with Spokane and Trout Lodge hatchery collections. We suspect that, similar to other species (Williams et al. 1997; Nielsen et al. 2001; Weber and Fausch 2003; McGinnity et al. 2004), hatchery-adapted rainbow trout of coastal ancestry did not replace native fish because they may not have survived as well or been as successful on wild spawning grounds as regionally adapted native inland redband rainbow trout, and that hybrid offspring may have suffered reduced survival and fitness (Utter 2001).

The mainstem of the Spokane and Little Spokane rivers were heavily planted (Table 2) but showed little impact from hatchery fish. In the middle Spokane River, below Spokane Falls, hatchery fish tended to move down the river into the reservoir associated
with Nine Mile Falls dam (McLellan 2005a), and thus may not have used upstream mainstem and tributary spawning grounds. Similarly, the Little Spokane River enters Long Lake dam reservoir and hatchery fish may have moved down into the reservoir. Dragoon and Deadman creeks also received a fair number of hatchery fish but showed little relationship to hatchery collections. Dragoon Cr. encompassed some of the most degraded habitat in the system, although a spring in the middle of the system provided a refuge, and in Deadman Cr., good habitat was intermittent between large stretches of poor habitat (McLellan 2005a, 2005b). In both tributaries, hatchery fish may have survived poorly or were unable to compete with native fish inhabiting habitat patches.

Two inland stocks from Phalon Lake and Lyons Ferry Hatchery were also planted minimally into the Spokane River system. Assignment tests suggested that a few Deadman Cr., and Little Spokane River fish looked genetically like Phalon Lake fish (Table 8). Since Phalon Lake fish were planted in the Little Spokane River (Table 2), and fish from the Little Spokane River appeared to stray into Deadman Cr. (Table 8), these misassigned fish could have originated at Phalon Lake. However, three Phalon Lake fish looked genetically like wild rainbow in lower Little Spokane River. Reciprocal misassignments could also reflect recent shared ancestry: although mouths of the Spokane and Kettle rivers are around 100 km apart, prior to 1911 no barriers prevented straying. The relationship may also reflect common ancestry if colonists from the same refuge repopulated inland drainages following the retreat of glaciers and glacial lakes (Currens 1997, McCusker et al. 2000, Docker and Heath 2002).

Stocking efforts were lower for cutthroat trout and we saw no evidence of genetic impact in collections from stocked regions. Four possible hybrids were collected in the upper Spokane River, which had not been stocked, but was the only region where cutthroat trout had occurred naturally prior to stocking. However, our results indicated that cutthroat trout were successfully introduced into Nehchen Cr. in the upper Hangman Cr. drainage following dewatering 20 years ago. The dewatering may have eliminated native rainbow trout, allowing the cutthroat trout unchallenged colonization. Further, these cutthroat trout were from Benewah Cr. in the Coeur d'Alene drainage across the ridge from Nehchen Cr. Ecological conditions may have been similar such that fish were adapted to conditions prevailing in Nehchen Cr.

Impact of barriers

The impact of hatchery supplementation was complexed with habitat quality and the presence, permeability and duration of barriers. Habitat in the Spokane drainage was affected by anthropogenic activities throughout the 1900's. In addition to hatchery supplementation and decreases in water quality and availability, dam and road building decreased physical connectivity throughout the drainage. Most collections exhibited genetic signals suggesting that populations had experienced genetic bottlenecks that might be associated with disrupted gene flow. The foremost effect of barriers upon populations depended upon whether the barrier could be traversed. All barriers allowed fish to move downstream, generating one-way gene flow between formerly connected groups of fish.

Some barriers permitted upstream movement. In Dartford Cr., the barrier was a culvert surmountable by larger fish under certain flow conditions. Although allelic richness was lower above the barrier, the collections were undifferentiated indicating that the population remained connected and possibly effectively larger, countering drift and differentiation. The semi-permeable barrier also allowed hatchery introgression into the portion of the population above the barrier.

In Deadman Cr., barriers included an unsurmountable dam as well two possibly surmountable culverts. Although genetically closest to each other, the population in SF Deadman Cr. that was isolated above the barriers differed significantly from the Deadman Cr. population below the barriers. While their genetic relationship prior to barriers is unknown, the longer branch length in the dendrogram, decreased allelic richness, and positive bottleneck signal suggested that the isolated SF Deadman Cr. population experienced enhanced genetic drift.

Within Deep Cr., a waterfall barrier predated human activity. Although the tributary was further isolated by a dry creek bed (discussed below), hatchery fish influenced collections above and below the waterfall, likely bringing the gene pools closer to each other and to other gene pools influenced by hatchery fish (Waples 1995). In the Little Spokane River, a waterfall also divided the river into upper and lower regions. While documented hatchery stocking was mild in the upper river and intense in the lower river, hatchery fish were free to move down-river into Long Lake, a preferred habitat, possibly decreasing impact on the populations. The pairwise F_{ST} value indicated that the upper and lower
river collections had more variance between them than all other above and below barrier comparisons, possibly because of longer isolation, fewer founders in the upper river population, and lower hatchery impact.

Habitat quality and availability also likely influenced population sizes and rates of genetic drift. Where habitat was poor or patchy and limited by a barrier, as in Dragoon Creek, drift would be stronger in smaller populations, increasing divergence seen in longer branch lengths in the dendrogram. In collections from upper drainages positive $F_{\text {IS }}$ values, higher relatedness and lower allelic richness indicated smaller population sizes. In contrast, populations below barriers where habitat was less restricted, such as the lower Spokane River and Deadman Cr., received allelic infusions from strays, increasing their allelic richness and genetic connections to other populations (where strays originated), illustrated by short branch lengths in the dendrogram and lower average pairwise F_{ST} values.

The Coulee Cr. collection was the most divergent in the study, and although habitat is good above the barrier and supported a large population, the dry creek bed isolated the tributary long before humans altered connectivity in the system. Given the episodic nature of flow throughout the full creek length, divergence may have been enhanced by a small founder group. Deep Cr. shared the barrier (and likely founders) with Coulee Cr. However, as discussed above, exposure to hatchery fish ponded above the barrier and stocked into Deep Cr. shifted the Deep Cr. gene pool closer to other hatchery-influenced collections as well as increasing allelic richness in Deep Cr.

We found that, similar to brown trout (Van Houdt et al. 2005), barriers protected some populations from hatchery escapees, thus preserving some native genetic diversity. In unstocked tributaries, collections from above barriers, had little to no coastal hatchery genetic signal and collections from below barriers appeared to be introgressed. The data suggested that hatchery introgression in wild populations depended upon the magnitude of exposure to hatchery fish through stocking or hatchery escapees.

Acknowledgements

Funding was provided by the Bonneville Power Administration through a subcontract with the Kalispel Tribe, by Avista Corporation, and by WDFW state general funds. Most samples were collected by Jason McLellan (WDFW). Samples from Trout Lodge, Inc. were provided by Bill Witt. Bruce Kinkead, Coeur d’Alene Tribal Biologist, collected upper Hangman Creek samples and provided insights into the natural and contemporary history of the drainage. The manuscript was improved by thoughtful review by Denise Hawkins, Sewall Young and Ken Warheit (WDFW), Gary Winans (NMFS), and three anonymous reviewers.

References

Allendorf, F. W., R. F. Leary, P. Spruell, and J. K. Wenburg. 2001. The problem with hybrids: setting conservation guidelines. Trends in Ecology and Evolution 16(11):613-622.

Banks, M. A., M. S. Blouin, B. A. Baldwin, V. K. Rashbrook, H. A. Fitzgerald, S. M. Blankenship, and D. Hedgecock. 1999. Isolation and inheritance of novel microsatellites in chinook salmon (Oncorhynchus tschawytscha). Journal of Heredity 90:281-288

Behnke, R. J. 1992. Native trout of western North America. American Fisheries Society, Monograph 6, Bethesda, Maryland.

Belkhir K., V. Castric, and F. Bonhomme. 2002. IDENTIX, a software to test for relatedness in a population using permutation methods. Available from www.univ-montp2.fr/~genetix/labo.htm\#programmes

Bumgarner, J., M. P. Small, L. Ross, and J. Dedloff. 2003. Lyons Ferry Complex Hatchery Evaluation: Summer Steelhead and Trout Report 2001 and 2002 Run Years to USFWS Lower Snake River Compensation Plan Office. Report \# FPA03-15.

Busack, C.A. and A. A. E. Gall. 1980. Ancestry of artificially propagated California rainbow trout strains. California Fish and Game, 66(1):17-24.

Castric, V., L. Bernachez, K. Belkhir, and F. Bonhomme. 2002. Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity 89:27-35.

Cavalli-Sforza, L. L. and A. W. F. Edwards. 1967. Phylogenetic analysis: models and
estimation procedures. American Journal of Human Genetics 19:233-257.
Cornuet, J.-M., S. Piry, G. Luikart, A. Estoup, and M. Solignac. 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989-2000.

Crawford, B. A. 1979. The origin and history of the trout brood stocks of the Washington Department of Game. Washington State Game Department Fisheries Research Report, 76 pp .

Currens, K. P., C. B. Schreck, and H. W. Li. 1990. Allozyme and Morphological divergence of rainbow trout (Oncorhynchus mykiss) above and below waterfalls in the Deschutes River, Oregon. Copei 3:730-746.

Currens, K. P. 1997. Evolutionary Ecology of redband trout. In: Evolution and Risk in Conservation of Pacific salmon. PhD. Dissertation. Oregon State University, Corvallis, Oregon.

Docker, M. F. and D. D. Heath. 2002. Genetic comparison between sympatric anadromous steelhead and freshwater resident rainbow trout in British Columbia, Canada. Conservation Genetics 4(2):227-231.

Excoffier, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479-491.

Felsenstein, J. 1993. Phylogeny inference package (PHYLIP) Version 3.5c. University of Washington, Seattle.

Fritzner, N. G., M. M. Hansen, S. S. Madsen, and K. Kristiansen. 2001. Use of microsatellite markers for identification of indigenous brown trout in a
geographical region heavily influenced by stocked domesticated trout. Journal of Fish Biology 58:1197-1210.

Glaubitz, J. 2004. CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecology Notes 4(2):309-310.

Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet (1995) Available from http://www.unilch/izea/softwares/fstat.html

Hansen, M. M. and K.-L. D. Mensberg. 1998. Genetic differentiation and relationship between genetic and geographical distance in Danish sea trout (Salmo trutta L.) populations. Heredity 81:493-504.

Hansen, M. M., E. E. Nielsen, D. Bekkevold, and K.-L. D. Mensberg. 2001. Admixture analysis and stocking impact assessment in brown trout (Salmo trutta), estimated with incomplete baseline data. Canadian Journal of Fisheries and Aquatic Science 58:1853-1860.

Hansen, M. M. 2002. Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Molecular Ecology 11:1003-1015.

Hindar, K., N. Ryman, and F. Utter. 1991. Genetic effects of cultured fish on natural fish populations. Canadian Journal of Fisheries and Aquatic Science 48:945-957.

Kalinowski, S. K. 2005. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5(1)287.

Marshall, A. M., M. P. Small, and S. Foley. 2006. Genetic relationships among anadromous and non-anadromous Oncorhynchus mykiss in Cedar River and Lake Washington - implications for steelhead recovery planning. Final Report to Cedar River Anadromous Fish Committee and Seattle Public Utilities.

McCusker, M. R., E. Parkinson, and E. B. Taylor. 2000. Mitochondrial DNA variation in rainbow trout (Oncorhynchus mykiss) across its native range: Testing biogeographical hypotheses and their relevance to conservation. Molecular Ecology 99:2089-2108.

McGinnity, P., P. Prodöhl, N. Ó Maoiléidigh, R. Hynes, D. Cotter, N. Baker, B. O’Hea, and A. Ferguson. 2004. Differential lifetime success and performance of native and non-native Atlantic salmon examined under communal natural conditions. Journal of Fish Biology 65(s1):173-187.

McLellan, J. G. 2005a. 2003 WDFW Annual Report for the Project Resident Fish Stock Status Above Chief Joseph and Grand Coulee Dams. Part I. Baseline assessment of fish species distribution and densities in the Little Spokane River drainage, year 3, and the Spokane River below Spokane Falls. In: Connor, J., and nine other authors. 2005. Resident fish stock status above Chief Joseph and Grand Coulee Dams. 2003 Annual Report, Report to Bonneville Power Administration, Project No. 199700400.

McLellan, J. G. 2005b. 2004 WDFW Annual Report for the Project Resident Fish Stock Status Above Chief Joseph and Grand Coulee Dams. Part I. Baseline assessment of fish species distribution and densities in Deep and Coulee creeks and a genetic assessment of the wild rainbow trout populations in select tributaries of Latah
(Hangman) Creek and the middle Spokane River in: Connor, J., and nine other authors. 2005. Resident fish stock status above Chief Joseph and Grand Coulee Dams. 2004 Annual Report, Report to Bonneville Power Administration, Project No. 199700400.

Morris, D. B., K. R. Richard, and J. M. Wright. 1996. Microsatellites from rainbow trout (Oncorhynchus mykiss) and their use for genetic study of salmonids. Canadian Journal of Fisheries and Aquatic Science 53:120-126.

Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. Nelson, R. J., and T.D. Beacham. 1999. Isolation and cross species amplification of microsatellite loci useful for study of Pacific salmon. Animal Genetics 30:228229.

Neraas, L. P. and P. Spruell. 2001. Fragmentation of riverine systems: the genetic effects of dams on bull trout (Salvelinus confluentus) in the Clark Fork River system. Molecular Ecology 10:1153-1164.

Nielsen, J. L., K. D. Crow, and M. C. Fountain. 1999. Microsatellite diversity and conservation of a relic trout population: McCloud River redband trout. Molecular Ecology 8:S129-S142.

Nielsen, E. E., M. M. Hansen, and L. A. Bach. 2001. Looking for a needle in a haystack: discovery of indigenous Atlantic salmon (Salmo salar L.) in stocked populations. Conservation Genetics 2:219-232.

Olsen, J. B., S. L. Wilson, E. J. Kretschmer, K. C. Jones, and J. E. Seeb. 2000.
Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Molecular Ecology 9:2185-2187.

Page, R. D. M. 2001. TreeView (Win32) 1.6.6 Tree drawing software for Apple Macintosh and Microsoft Windows: available at http://taxonomy.zoology.gla.ac.uk/rod/rod.html

Piry, S., G. Luikart, and J.-M. Cornuet. 1998. BOTTLENECK, a program for detecting recent population effective population size reductions from allele frequency data. Available from http://www.ensam.inra.fr.URLB.

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.

Queller, D. C., and K. F. Goodnight. 1989. Estimating relatedness using genetic markers. Evolution 43(2):258-275.

Rannala, B. and J. L. Mountain. 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences USA 94:9197-9201.

Raymond, M. and F. Rousset. 1995. GENEPOP (Version 3.3): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86:248-249.

Reisenbichler, R. R. and S. P. Rubin. 1999. Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations. ICES Journal of Marine Science 56:459-466.

Rexroad III, C. E., R. L. Coleman, A. M. Martin, W. K. Hershberger, and J. Killefer. 2001. Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Animal Genetics 32:317-319.

Rohlf, F. J. 1993. Numerical taxonomy and multivariate analysis system. Version 2.02J. Applied Biostatistics Inc., Setauket, NY.

Schneider, S., D. Roessli, and L. Excoffier. 2000. Arlequin Version (2.001): a software for population genetic data analysis. Genetics and Biometry Laboratory University of Geneva, Switzerland.

Small, M. P., T. D. Beacham, R. E. Withler, and R. J. Nelson. 1998. Discriminating coho salmon (Oncorhynchus kisutch) populations within the Fraser River, British Columbia. Molecular Ecology 7:141-155.

Smith, C. T., B. F. Koop, and R. J. Nelson. 1998. Isolation and characterization of coho salmon (Oncorhynchus kisutch) microsatellites and their use in other salmonids. Molecular Ecology 7:1613-1621.

Spidle, A. P., S. T. Kalinowski, B. A. Lubinski, D. L. Perkins, K. F. Beland, J. F. Kocik, and T. L. King. 2003. Population structure of Atlantic salmon in Maine with reference to populations from Atlantic Canada. Transactions of the American Fisheries Society 132:196-209.

Spies, I. B., D. J. Brasier, P. T. O’Reilly, T. R. Seamons, and P. Bentzen. 2005. Development and characterization of novel tetra-, tri-, and dinucleotide microsatellite markers in rainbow trout (Oncorhynchus mykiss). Molecular Ecology Notes 5:278-281.

Spruell, P., A. R. Hemmingsen, P. J. Howell, N. Kanda, and F. W. Allendorf. 2003. Conservation genetics of bull trout: geographic distribution of variation at microsatellite loci. Conservation Genetics 4(1):17-29.

Sušnik, S., P. Berrebi, P. Dove, M .M. Hansen, and A. Snoj. 2004. Genetic introgression between wild and stocked salmonids and the prospects for using molecular
markers in population rehabilitation: the case of the Adriatic grayling (Thymallus thymallus L. 1785). Heredity 93:273-282.

Taylor, E. B. 1991. A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98:185-207.

Taylor, E. B., M. D. Stamford, and J. S. Baxter. 2003. Population subdivision in westslope cutthroat trout (Oncorhynchus clarki lewisi) at the northern periphery of its range: evolutionary inferences and conservation implications. Molecular Ecology 12(10):2609-2622.

USGS 2006. United States Geological Survey: the Channeled Scablands of Eastern Washington. Available online at http://www.cr.nps.gov/history/online_books/geology/publications/

Utter, F. M. 2001. Patterns of subspecific anthropogenic introgression in two salmonid genera. Reviews in Fish Biology and Fisheries 10:265-279.

Van Houdt, J. K. J., Pinceel, M. -C. Flamand, M. Briquet, E. Dupont, F. A. M. Volckaert, and P. V. Baret. 2005. Migration barriers protect indigenous brown trout (Salmo trutta) populations from introgression with stocked hatchery fish. Conservation Genetics 6 (2): 175-191.

Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley. 2004. MicroChecker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535-538.

Waples, R. S. 1995. Evolutionary significant units and the Conservation of biological diversity under the Endangered Species Act. In Evolution and the Aquatic Ecosystem: Defining unique units in population conservation. Edited by Nielsen,
J. L. and G. A. Powers. Symposium 17. American Fisheries Society: Betheseda, Maryland, pp 8-27.

Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370.

Weber, E. D. and K. D. Fausch. 2003. Interactions between wild and hatchery salmonids in streams: differences in biology and evidence for competition. Canadian Journal of Fisheries and Aquatic Science 60:1018-1036.

Williams, R. N., R. F. Leary, and K. D. Currens. 1996. Localized genetic effect of longterm hatchery stocking program on resident rainbow trout in the Metolius River, Oregon. North American Journal of Fisheries Management 17:1079-1093.

Table 1. Statistical information for collections: the number of locus pairs in genotypic linkage disequilibria (link), gene diversity (Gene Div), allelic richness (Rich), positive bottleneck signal (BNeck) and $F_{\text {IS }}$ and associated P value (bold values significant after corrections). Combined abbreviation (Comb) indicates groups for assignment and pairwise $F_{\text {ST }}$ tests. "Hatch" indicates hatchery and na = sample too small. Collections above barriers indicated by * and stocked collections indicated by @.

River	Collection	Abbreviation	Comb	n	link	Gene Div	Rich	BNeck	$F_{\text {IS }}$	P value
Upper Hangman Cr.	2003 Mission Cr.*	MSS	Hang	9	na	na	na	na	na	na
	2004 Mission Cr.*	MSS	Hang	10	na	na	na	na	na	na
	2003 Sheep Cr.*	MSS	Hang	3	na	na	na	na	na	na
	2004 Sheep Cr.*	MSS	Hang	5	na	na	na	na	na	na
	2003 Martin Cr.*	03Martin	Hang	13	na	na	na	na	na	na
	2004 Hangman Cr.*@	04Hang	Hang	9	na	na	na	na	na	na
	2003 Indian Cr.*	03Indian	Hang	37		0.75	9.05	x	0.053	0.004
	2004 Indian Cr.*	04Indian	Hang	21		0.77	na	na	0.091	<0.001
(cutthroat) 2003 Nehchen Cr.*		03Nehc		65		0.60	8.51	X	0.162	<0.001
(cutthroat) 2004 Nehchen Cr.*		04Nehc		37		0.60	8.51	x	0.092	0.005
Lower Hangman Cr.	2004 Marshall Cr.@	04Marsh		50		0.71	6.57	x	0.060	0.003
	2004 California Cr.@	04Calif		49	9	0.76	8.79	x	0.056	0.002
Spokane R.	2002 Middle Spokane R.*@	02MidSpok	Spok	47		0.77	10.49		0.056	0.002
	2003 Middle Spokane R.*@	03MidSpok	Spok	92		0.74	9.55		0.072	<0.001
	2003 Upper Spokane R.*@	03UpSpok	Spok	67		0.67	7.62		0.071	<0.001
	2004 Coulee Cr.*@	04Coulee		50		0.64	6.36		0.011	0.323
	2004 Deep Cr.*@	04Deep	Deep	50		0.73	8.17	x	0.035	0.031
	2004 Upper Deep Cr.*(@pond escape)04UpDeep		Deep	50		0.70	6.71	x	0.018	0.209
Little Spokane R.	2003 Upper Little Spokane R.*@	03UpLSpok		39		0.75	9.07	x	0.043	0.023
	2003 Lower Little Spokane R.@	03LoLSpok		62		0.80	12.17		0.153	<0.001
	2003 Dartford Cr. (above barrier)*	03DartAB	Dart	51		0.79	9.59	X	0.042	0.010
	2003 Dartford Cr. (below barrier)	03DartBB	Dart	29	3	0.78	10.39		0.001	0.477
	2003 Deadman Cr. @	03Dead	Dead	100	2	0.78	11.84		0.111	<0.001
	2003 South Fork Deadman Cr. *	03SFDead	Dead	49	2	0.74	9.99	x	0.037	0.027
	2003 Little Deep Cr.	03LDeep	LDeep	50	1	0.75	11.00		0.030	0.040
	2003 North Fork Little Deep Cr.	03NFLDeep	LDeep	50	1	0.69	8.94		0.034	0.044
	2003 South Fork Little Deep Cr.	03SFLDeep	LDeep	60		0.71	9.46		0.062	<0.001
	2001 Otter Cr.*@	01Otter		50	3	0.76	9.32	x	0.052	0.003
	2001 Deer Cr.*@	01DeerCr	Deer	100		0.77	11.86		0.033	0.003
	2002 Little Deer Cr.*	02LilDeer	Deer	50	1	0.73	10.34		0.037	0.028
	2001 Buck Cr.*@	01Buck		50		0.80	11.19		0.014	0.199
	2002 Lower Dragoon Cr. @	02LoDrag	Drag	100		0.79	11.56	X	0.047	<0.001
	2002 West Branch Dragoon Cr.	02WBDrag	Drag	50	2	0.77	9.53	X	-0.005	0.603
	2002 Upper Dragoon Cr.*	02UpDrag	Drag	50		0.77	10.16	X	0.022	0.112
Hatch (Redband)	2001 Phalon Lake Hatch	01PhaH	PhaH	100	2	0.83	13.38	X	0.021	0.030
	2002 Phalon Lake Hatch	02PhaH	PhaH	100	1	0.79	11.57	x	0.081	<0.001
Hatch (Uncertain)	2004 Trout Lodge Hatch	04TroutH		49		0.65	5.64	x	0.022	0.182
Hatch (Coastal)	2000 Spokane Hatch	00 SpHat		96		0.70	6.35	x	-0.007	0.663
Hatch (Upper Columbia) 2002 Lyons Ferry Hatch steelhead		02LFH		100	2	0.74	11.70	x	0.065	<0.001

1 Table 2. Sources and numbers of hatchery trout stocked into tributaries and lakes of the 2 Spokane drainage (from Brodie Cox, WDFW, unpublished data). Lakes under Buck 3 Creek were within the Buck Creek system.
4
5

Tributary	\# fish	Year planted	\# Years planted	Source
Rainbow				
Coulee Creek	7,000	1936	1	Spokane Hatchery
Upper Little Spokane River	49,160	$1940-1944$	5	Spokane Hatchery
Little Spokane River	922,240	$1936-2002$	36	Spokane Hatchery
Little Spokane River	500	2002	1	Phalon Lake Hatchery
Dragoon Creek	388,556	$1934-1985$	20	Spokane Hatchery
Buck Creek	781,387	$1941-1980$	4	Spokane Hatchery
		Diamond Lake	$5,006,950$	$1933-1994$
	Diamond Lake	69,768	1997	Spokane Hatchery
	Sasheen Lake	$1,963,661$	$1939-1994$	1
Deadman Creek	78,419	$1934-1955$	35	Lyons Ferry Hatchery
Deer Creek	10,000	1936	Spokane Hatchery	
Otter Creek	10,000	1936	Spokane Hatchery	
Spokane River	$1,348,134$	$1935-2002$	1	Spokane Hatchery
Spokane River	22,296	$1996-1998$	34	Spokane Hatchery
Spokane River	7,500	1995	Spokane Hatchery	
Spokane River	16,886	1995	1	Phalon Lake Hatchery
Marshall Creek	628,911	$1936-1983$	1	Trout Lodge Hatchery
Deep Creek	24,448	$1936-1944$	25	Lyons Ferry Hatchery
California Creek	10,000	1936	4	Spokane Hatchery
Hangman Creek	3,573	$1979-1987$	1	Spokane Hatchery

Cutthroat

Deep Creek	4,000	1939	1	Spokane Hatchery
Dragoon Creek	19,000	$1936-1937$	2	Spokane Hatchery
Little Spokane River and Buck Cr. area	$5,116,802$	$1933-1992$	36	Spokane Hatchery
Marshall Creek	82,000	1957	1	Spokane Hatchery
6				

1 Table 3. Information for multiplexes and loci including primer concentration, number of alleles in this study, size range (in 2 basepairs), observed heterozygosity (Ho), repeat unit size (in basepairs), $F_{\mathrm{ST}}, F_{\mathrm{IS}}$, and $F_{\text {IT }}$ values (calculated without cutthroat trout, all 3 bold values significantly different from zero). References for primer sequences are under Source.

Multiplex	Anneal T	cycles	Locus	conc [uM]	\#alleles	range	Ho	repeat	$F_{\text {ST }}$	$F_{\text {IS }}$	$F_{\text {IT }}$	Source
Omy-B2	55	26	One-102	0.05	34	182-305	0.789	4	0.059	0.049	0.197	Olsen et al. 2000
			One-114	0.05	26	177-280	0.828	4	0.078	0.024	0.192	Olsen et al. 2000
			Ots-100	0.04	26	168-298	0.826	2	0.090	-0.042	0.096	Nelson and Beacham 1999
Omy-C2	55	28	One-101	0.02	25	119-243	0.444	4	0.115	0.098	0.395	Olsen et al. 2000
			One-108	0.02	35	161-337	0.714	4	0.088	0.181	0.298	Olsen et al. 2000
			Ots-103	0.015	9	56-90	0.217	4	0.099	0.029	0.100	Small et al. 1998
Omy-D2	49	25	Omy-77	0.03	22	97-147	0.835	2	0.068	0.056	0.246	Morris et al. 1996
			Ots-1	0.03	22	158-266	0.727	2	0.098	0.014	0.172	Banks et al. 1999
			Ots-3M	0.02	11	132-156	0.573	2	0.088	0.084	0.237	Banks et al. 1999
Omy-E2	62	26	Omm-1070	0.025	42	164-374	0.797	4	0.064	0.127	0.239	Rexroad et al. 2001
			Omm-1130	0.05	57	185-399	0.800	4	0.073	0.042	0.152	Rexroad et al. 2001
			Omy-1011	0.045	21	134-245	0.798	4	0.075	0.056	0.219	Spies et al. 2005
Omy-F2	52	25	Oki-10	0.02	18	92-151	0.796	2	0.095	-0.060	0.123	Smith et al. 1998
			Omy-1001	0.03	30	167-242	0.810	2	0.120	-0.012	0.147	Spies et al. 2005

1 Table 4. Loci information for each collection: $F_{\text {IS }}$ value at each locus, underlined values
2 were significant before Bonferroni correction and bold values significant after correction.
3

Gr. Spokane	One-102	One-114	Ots-100	One-101	One-108	Ots-103	Omy-77	Ots-1	Ots-3M	Omm-1070	Omm-1130	Omy-1011	Oki-10	Omy-1001
02MidSpok	0.096	0.078	0.032	0.182	0.026	0.076	0.018	0.08	-0.042	0.039	0.072	$\underline{0.125}$	-0.003	-0.039
03UpSpok	0.056	0.049	0.012	$\underline{0.189}$	0.089	-0.013	-0.053	$\underline{0.213}$	-0.008	0.057	0.091	$\underline{0.316}$	0.027	-0.015
03MidSpok	0.072	$\underline{0.113}$	0.045	-0.126	0.059	-0.013	$\underline{0.093}$	0.012	0.044	0.176	0.046	$\underline{0.149}$	0.011	0.061
04Coulee	-0.020	-0.027	-0.031	-0.012	0.046	0.010	-0.072	-0.100	-0.114	0.320	0.020	0.101	-0.035	-0.031
04Deep	0.041	$\underline{0.213}$	-0.001	0.150	0.106	-0.141	0.018	-0.013	0.004	$\underline{0.111}$	-0.023	0.055	-0.017	0.006
04UpDeep	0.013	-0.034	-0.178	$\underline{0.351}$	$\underline{0.436}$	-0.044	-0.048	0.077	0.099	$\underline{0.196}$	0.020	0.053	-0.075	-0.115
04Marshall	$\underline{0.206}$	0.057	0.102	0.024	0.268	0.230	0.342	-0.010	$\underline{0.271}$	0.013	-0.047	-0.095	-0.108	-0.080
04Calif	0.056	0.046	-0.014	-0.119	$\underline{0.205}$	0.110	0.016	$\underline{0.159}$	0.019	0.051	0.077	$\underline{0.143}$	-0.041	$\underline{0.171}$
MSS	$\underline{0.205}$	$\underline{0.337}$	0.106	-0.048	$\underline{0.175}$	-0.034	0.211	$\underline{0.383}$	0.222	-0.115	-0.119	0.153	-0.052	0.009
03Indian	-0.033	-0.058	-0.003	$\underline{0.383}$	0.059	0.063	0.022	$\underline{0.560}$	-0.093	$\underline{0.197}$	0.256	0.029	0.055	-0.017
04Indian	$\underline{0.468}$	0.042	-0.116	-0.250	0.029	$\underline{0.508}$	-0.108	$\underline{0.416}$	0.141	$\underline{0.337}$	$\underline{0.207}$	-0.116	-0.021	-0.054
04Hang	0.118	0.127	-0.032	0.289	0.097	0.000	-0.134	0.119	-0.347	-0.161	0.015	0.111	$\underline{0.453}$	-0.134
03UpLSpok	-0.085	0.062	0.030	0.131	$\underline{0.177}$	-0.118	0.082	0.052	0.011	0.061	0.093	0.111	0.044	-0.022
03LoLSpok	-0.027	$\underline{0.109}$	0.047	0.068	$\underline{0.064}$	0.148	0.012	$\underline{0.100}$	-0.122	0.726	0.544	0.079	0.089	-0.010
03DartAB	0.014	0.095	-0.101	0.062	$\underline{0.153}$	-0.130	0.017	-0.042	0.065	0.231	$\underline{0.129}$	0.028	0.081	0.033
03DartBB	0.072	-0.022	-0.032	0.029	$\underline{0.289}$	0.118	-0.106	-0.006	0.074	-0.042	0.103	-0.033	-0.092	-0.003
03Dead	$\underline{0.089}$	$\underline{0.076}$	$\underline{0.081}$	0.068	$\underline{0.195}$	-0.058	0.062	0.194	0.108	0.256	$\underline{0.196}$	$\underline{0.072}$	0.065	0.023
03SFDead	-0.049	-0.020	0.093	0.105	0.361	-0.055	-0.139	0.029	0.085	$\underline{0.154}$	0.023	0.088	0.078	0.108
03LDeep	-0.130	0.012	0.028	-0.026	$\underline{0.193}$	0.310	-0.025	0.102	0.036	0.004	0.087	$\underline{0.132}$	$\underline{0.131}$	0.028
03NFLDeep	0.079	-0.044	$\underline{0.218}$	-0.028	0.434	-0.014	-0.045	0.099	-0.005	0.040	-0.010	0.027	0.006	-0.015
03SFLDeep	0.101	0.082	0.000	-0.152	$\underline{0.111}$	-0.009	0.094	0.080	0.039	0.069	0.061	0.052	-0.014	$\underline{0.117}$
01 Otter	0.081	-0.004	0.047	-0.102	0.273	0.073	0.094	-0.020	0.395	0.054	0.087	-0.094	0.003	0.064
01DeerCr	0.042	0.019	0.038	0.084	0.280	0.198	0.037	-0.059	$\underline{0.198}$	0.025	$\underline{0.110}$	-0.063	0.032	-0.041
02LilDeer	-0.006	0.023	0.028	0.043	0.371	-0.088	0.064	0.053	0.031	$\underline{0.185}$	$\underline{0.118}$	-0.084	-0.042	-0.030
01Buck	0.045	-0.049	-0.003	0.042	$\underline{0.106}$	-0.065	0.017	-0.061	0.043	$\underline{0.150}$	-0.057	0.037	-0.016	0.024
02LoDrag	$\underline{0.105}$	0.011	-0.033	0.019	$\underline{0.172}$	-0.048	0.060	0.120	-0.036	$\underline{0.052}$	$\underline{0.070}$	0.062	-0.036	$\underline{0.082}$
02WBDrag	-0.150	0.016	-0.029	0.133	$\underline{0.194}$	0.045	-0.083	0.029	0.056	$\underline{0.139}$	0.040	-0.008	-0.034	-0.153
02UpDrag	-0.077	-0.023	-0.003	-0.017	$\underline{0.165}$	0.021	$\underline{0.191}$	-0.026	-0.117	0.040	$\underline{0.123}$	$\underline{0.128}$	-0.114	-0.027
Hatchery														
01PhaHat	0.019	0.013	0.055	0.050	$\underline{0.084}$	-0.004	-0.006	0.005	0.040	0.045	$\underline{0.054}$	-0.026	-0.036	0.005
02PhaHat	$\underline{0.078}$	0.048	0.020	-0.086	0.059	-0.126	0.037	$\underline{0.296}$	0.012	$\underline{0.228}$	$\underline{0.098}$	0.030	-0.033	$\underline{0.070}$
04TroutH	-0.013	-0.148	-0.155	0.124	0.115	0.000	0.080	-0.005	0.071	0.074	$\underline{0.267}$	0.123	-0.129	-0.043
00 SpHat	-0.034	0.043	-0.014	0.021	0.006	0.124	0.004	-0.006	0.020	0.004	-0.062	-0.018	-0.162	-0.106
02 LFH	$\underline{0.061}$	$\underline{0.058}$	0.053	0.032	$\underline{0.113}$	-0.085	0.052	0.195	0.007	$\underline{0.140}$	$\underline{0.150}$	-0.031	NA	0.010
Cutthroat														
03 Nehc	-0.206	0.135	0.667	0.047	0.060	0.014	-0.242	0.108	0.064	$\underline{0.367}$	$\underline{0.172}$	$\underline{0.692}$	-0.075	0.103
04 Nehc	-0.289	-0.059	$\underline{0.365}$	$\underline{0.774}$	0.042	0.137	0.074	0.003	0.114	0.211	-0.016	0.407	0.021	-0.070

Table 5. Pairwise F_{ST} values with collections combined by tributary (see Table 1). Average pairwise F_{ST} values for wild collections 2 compared to other wild collections, and hatchery collections compared to only wild collections are under "Avg". Highest average 3 value is in bold type. All pairwise values were significantly different from $0(P<0.0001)$.

	Avg	Hang	Spok	04Coulee	Deep	04Marsh	04Calif	03UpLSpok 03	3LoLSpok	Dart	Dead	LDeep	01Otter	Deer	01Buck	Drag	PhaH	02LFH	00SpHat	TroutH
Hang	0.0912																			
Spok	0.0962	0.0566																		
04Coulee	0.1647	0.1493	0.1516																	
Deep	0.1102	0.1441	0.1275	0.1753																
04Marsh	0.1459	0.1815	0.1674	0.2387	0.1065															
04Calif	0.1000	0.0606	0.0739	0.1531	0.1480	0.1908														
03UpLSpok	0.1044	0.0899	0.1192	0.1972	0.1248	0.1702	0.1218													
03LoLSpok	0.0591	0.0629	0.0692	0.1439	0.0725	0.1075	0.0622	0.0664												
Dart	0.0859	0.1100	0.1145	0.1844	0.0817	0.1073	0.1110	0.0910	0.0475											
Dead	0.0628	0.0444	0.0580	0.1448	0.0973	0.1391	0.0614	0.0636	0.0279	0.0630										
LDeep	0.0816	0.0686	0.0851	0.1622	0.1164	0.1423	0.0930	0.0955	0.0499	0.0752	0.0360									
01Otter	0.0820	0.0871	0.0940	0.1705	0.0976	0.1459	0.0908	0.0878	0.0415	0.0664	0.0441	0.0676								
Deer	0.0695	0.0516	0.0654	0.1523	0.1156	0.1476	0.0560	0.0853	0.0224	0.0673	0.0194	0.0394	0.0512							
01Buck	0.0740	0.1013	0.0915	0.1673	0.0550	0.0867	0.0996	0.0821	0.0312	0.0364	0.0532	0.0676	0.0609	0.0668						
Drag	0.0623	0.0692	0.0725	0.1448	0.0802	0.1109	0.0774	0.0667	0.0228	0.0464	0.0271	0.0437	0.0423	0.0320	0.0362					
PhaH	0.0590	0.0566	0.0718	0.1371	0.0695	0.1048	0.0655	0.0608	0.0218	0.0523	0.0309	0.0556	0.0491	0.0397	0.0392	0.0301				
02LFH	0.0734	0.0546	0.0890	0.1460	0.1052	0.1431	0.0738	0.0693	0.0431	0.0742	0.0360	0.0613	0.0576	0.0405	0.0662	0.0417	0.0336			
00 SpHat	0.1440	0.1868	0.1879	0.2336	0.1258	0.1616	0.1811	0.1357	0.1078	0.0982	0.1280	0.1436	0.1288	0.1436	0.0951	0.1019	0.1084	0.1465		
TroutH	0.1573	0.2011	0.1791	0.2668	0.1128	0.1388	0.2048	0.1796	0.1191	0.1163	0.1492	0.1628	0.1580	0.1663	0.0853	0.1247	0.1277	0.1623	0.1769	
5																				

	1	2		1	2	3	n
03UpSpok	0.972	0.028	03UpSpok	0.011	0.027	0.963	67
03MidSpok	0.996	0.004	03MidSpok	0.037	0.005	0.959	92
02MidSpok	0.996	0.004	02 MidSpok	0.171	0.004	0.825	47
03UpLSpok	0.996	0.004	03UpLSpok	0.183	0.005	0.813	39
03LoLSpok	0.996	0.004	03LoLSpok	0.387	0.005	0.608	62
03DartAB	0.998	0.002	03DartAB	0.450	0.002	0.548	51
03DartBB	0.998	0.002	03DartBB	0.508	0.002	0.489	29
03Dead	0.998	0.002	03Dead	0.138	0.003	0.859	100
03SFDead	0.997	0.003	03SFDead	0.026	0.002	0.971	49
03LDeep	0.998	0.002	03LDeep	0.144	0.003	0.853	50
03NFLDeep	0.998	0.002	03NFLDeep	0.016	0.002	0.982	50
03SFLDeep	0.998	0.002	03SFLDeep	0.023	0.003	0.975	60
01Otter	0.988	0.012	01Otter	0.059	0.009	0.932	50
01DeerCr	0.991	0.009	01DeerCr	0.061	0.009	0.930	100
02LilDeer	0.996	0.004	02LilDeer	0.023	0.004	0.973	50
01Buck	0.996	0.004	01Buck	0.750	0.005	0.245	50
02LoDrag	0.996	0.004	02LoDrag	0.267	0.004	0.729	100
02WBDrag	0.996	0.004	02 WBDrag	0.178	0.004	0.818	50
02UpDrag	0.997	0.003	02UpDrag	0.129	0.003	0.868	50
04Deep	0.997	0.003	04Deep	0.981	0.003	0.016	50
04UpDeep	0.995	0.005	04UpDeep	0.983	0.004	0.014	50
04Coulee	0.998	0.002	04Coulee	0.143	0.003	0.855	50
04Calif	0.998	0.002	04Calif	0.075	0.003	0.923	49
04Marsh	0.998	0.002	04Marsh	0.970	0.002	0.028	50
AllIndian	0.989	0.011	AllIndian	0.005	0.009	0.985	67
03Nehchen	0.025	0.975	03Nehchen	0.004	0.971	0.025	61
04Nehchen	0.003	0.997	04Nehchen	0.004	0.991	0.005	37
MSS	0.998	0.002	MSS	0.003	0.002	0.995	33
03Martin	0.996	0.004	03Martin	0.009	0.004	0.987	13
00SpHat	0.997	0.003	00 SpHat	0.993	0.003	0.005	100
01Gold	0.997	0.003	01 Gold	0.987	0.003	0.010	48
01 Eell	0.997	0.003	01 Eell	0.993	0.002	0.005	89
02 STac	0.997	0.003	02STac	0.988	0.002	0.010	50
TroutH	0.997	0.003	TroutH	0.991	0.004	0.005	49
02LFH	0.994	0.006	02LFH	0.012	0.005	0.982	100
01PhaHat	0.996	0.004	01PhaHat	0.295	0.005	0.700	100
02PhaHat	0.995	0.005	02PhaHat	0.020	0.006	0.973	100
02 SullCr	0.007	0.993	02 SullCr	0.004	0.990	0.006	96
03SullLk	0.118	0.882	03SullLk	0.059	0.871	0.070	34
$\underline{03 \mathrm{GoldCr}}$	0.019	0.981	03GoldCr	0.022	0.973	0.005	42

Table 6. Bayesian analysis of cutthroat-rainbow hybridization (clusters set at 2), and redband-coastal hatchery introgression (clusters set at 3). Values above 25% are in bold type.

Table 7. Bayesian analysis of shared ancestry in pairwise tests comparing a subset of wild-origin rainbow trout collections from the Spokane River and Spokane Hatchery rainbow trout.

	1	2	n
00 SpHat	0.005	0.995	100
04Marsh	0.995	0.005	50
00 SpHat	0.014	0.986	100
01Buck	0.988	0.012	50
00 SpHat	0.008	0.992	100
04Deep	0.991	0.009	50
04UpDeep	0.995	0.005	50
00SpHat	0.007	0.993	100
Drag	0.988	0.012	200
00SpHat	0.008	0.992	100
03DartAB	0.994	0.006	51
03DartBB	0.987	0.013	29
Spok	0.014	0.986	100
03LoLSpok	0.991	0.009	62
00 SpHat	0.004	0.996	100
01Otter	0.995	0.005	50
00 SpHat	0.003	0.997	100
04Coulee	0.993	0.007	50

Figure 1. Map of Spokane River drainage showing tributaries where collections originated. Waterfalls are indicated by river kilometers in boxes. Man-made barriers and dry creek bed locations are designated approximately with triangles (Dartford Cr. barrier not shown). Filled circle marks the location of Spokane Hatchery. Map was constructed by Jim Shaklee (WDFW). City of Spokane ($118^{\circ} 40^{\prime} \mathrm{W} ; 47^{\circ} 50^{\prime} \mathrm{N}$) is shaded with grey color.

Figure 2. Consensus neighbor joining tree of Cavalli-Sforza and Edwards genetic chord distances (1967) among rainbow and cutthroat collections from Spokane and Pend Oreille drainages and hatcheries. Numbers at the nodes indicate the percentage (greater than 60%) of 10,000 trees in which collections beyond the nodes grouped together.

Figure 3. Multidimensional scaling analysis plot of Cavalli-Sforza and Edwards distances (1967) among hatchery collections and combined rainbow trout collections from the Spokane drainage.

Figure 1.
2
3

Figure 2.

Figure 3.

