PUGET SOUND ECOSYSTEM MONITORING PROGRAM
TOXICS IN BIOTA

2011/2012 MUSSEL WATCH PHASE 1
SAMPLING SUMMARY AND PROGRESS REPORT

By Jennifer Lanksbury and James E. West

In collaboration with NOAA’S
MUSSEL WATCH PROGRAM
NATIONAL CENTERS FOR COASTAL AND OCEAN SCIENCE
Author and Contact Information

Jennifer Lanksbury and James E. West
Washington Department of Fish and Wildlife
1111 Washington St. SE
Olympia, WA 98501-1051

Jennifer Lanksbury
jennifer.lanksbury@dfw.wa.gov
(360) 902-2820

James E. West
james.west@dfw.wa.gov
(360) 902-2842

Acknowledgements

Many citizen science volunteers either led or assisted with field collections during the 2011/12 Mussel Watch field season. We recognize the following groups for their assistance with this work: Snohomish County Marine Resources Committee (MRC), Seattle Aquarium, Port Townsend Marine Science Center (PTMSC), Whatcom County MRC, Stillaguamish Tribe, Olympic Coast National Marine Sanctuary (OCNMS), North Pacific Coast MRC, and US Navy Environmental Investment (ENVVEST) program.

This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement PC-00J29801 to Washington Department of Fish and Wildlife. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 ABSTRACT</td>
<td>4</td>
</tr>
<tr>
<td>2.0 INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Objectives</td>
<td>4</td>
</tr>
<tr>
<td>3.0 METHODS</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Mussel Watch Site Locations</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Sample Collection Methods</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Cancellations, Additions, and Changes</td>
<td>7</td>
</tr>
<tr>
<td>3.4 Data Records</td>
<td>8</td>
</tr>
<tr>
<td>4.0 RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>4.1 Physical Parameters</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Priority Sites for Analysis</td>
<td>11</td>
</tr>
<tr>
<td>5.0 APPENDIX</td>
<td>12</td>
</tr>
<tr>
<td>5.1 Mussel Watch – Phase 1 Quality Assurance Project Plan (QAPP)</td>
<td>12</td>
</tr>
<tr>
<td>5.2 Whidbey Island, Possession Point (WIPP) Datasheet</td>
<td>39</td>
</tr>
<tr>
<td>5.3 Sinclair Inlet, Waterman Point (SIWP) Datasheet</td>
<td>40</td>
</tr>
<tr>
<td>5.4 Commencement Bay, Tahlequah Point (CBTP) Datasheet</td>
<td>41</td>
</tr>
<tr>
<td>5.5 Elliott Bay, Four-Mile Rock (EBFR) Datasheet</td>
<td>42</td>
</tr>
<tr>
<td>5.6 South Puget Sound, Budd Inlet (SSBI) Datasheet</td>
<td>43</td>
</tr>
<tr>
<td>5.7 Puget Sound, Edmonds Ferry (PSEF) Datasheet</td>
<td>44</td>
</tr>
<tr>
<td>5.8 Puget Sound, Everett CEMEX (PSEC) Datasheet</td>
<td>45</td>
</tr>
<tr>
<td>5.9 Puget Sound, Kayak Point (PSKP) Datasheet</td>
<td>46</td>
</tr>
<tr>
<td>5.10 Puget Sound, Everett Harbor (PSEH) Datasheet</td>
<td>47</td>
</tr>
<tr>
<td>5.11 Puget Sound, Hermosa Point (PSHP) Datasheet</td>
<td>48</td>
</tr>
<tr>
<td>5.12 Puget Sound, Hat Island (PSHI) Datasheet</td>
<td>49</td>
</tr>
<tr>
<td>5.13 Elliott Bay, Duwamish Head (EBDH) Datasheet</td>
<td>50</td>
</tr>
<tr>
<td>5.14 Puget Sound, Port Townsend (PSPT) Datasheet</td>
<td>51</td>
</tr>
<tr>
<td>5.15 Puget Sound, Hood Canal (PSHC) Datasheet</td>
<td>52</td>
</tr>
<tr>
<td>5.16 Puget Sound, Port Angeles (PSPA) Datasheet</td>
<td>53</td>
</tr>
<tr>
<td>5.17 South Puget Sound, Kopachuck Park (SSKP) Datasheet</td>
<td>54</td>
</tr>
<tr>
<td>5.18 Bellingham Bay, Squalicum Marina Jetty (BBSM) Datasheet</td>
<td>55</td>
</tr>
<tr>
<td>5.19 Point Roberts, Point Roberts (PRPR) Datasheet</td>
<td>56</td>
</tr>
<tr>
<td>5.20 Willapa Bay, Nahcotta (WBNA) Datasheet</td>
<td>57</td>
</tr>
<tr>
<td>5.21 Elliott Bay, Myrtle Edwards (EBME) Datasheet</td>
<td>58</td>
</tr>
<tr>
<td>5.22 Puget Sound, Cavalerio County Park (PSCC) Datasheet</td>
<td>59</td>
</tr>
<tr>
<td>5.23 South Puget Sound, Tolmie Park (SSTP) Datasheet</td>
<td>60</td>
</tr>
<tr>
<td>5.24 Juan de Fuca Strait, Cape Flattery (JFCF) Datasheet</td>
<td>61</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Page

Table 1. Sample sites visited for the national Mussel Watch program during the 2011/12 field season.5
Table 2. National Mussel Watch program sites where sampling was rescheduled due to inclement weather during the 2011/12 field season ..8
Table 3. Average temperature and salinity at Washington State Mussel Watch sites sampled in 2011/12; (n) represents the number of replicate measurements taken at each site; temperature (T), salinity (S). ..10
Table 4. List of Washington State Mussel Watch sites labeled as high priority for chemical and histopathological analyses ...11

FIGURE

Page

Figure 1. Washington State Mussel Watch sites visited in the 2011/12 sampling season. See Table 1 for site name codes ..6
1.0 ABSTRACT

Marine mussels (*Mytilus* spp.) were sampled by Washington Department of Fish and Wildlife staff and citizen science volunteers at 23 national Mussel Watch (MW) program sites during the winter season (December through March) of 2011/12. These mussels were collected in order to avoid a break in the regular, biennial sampling for MW, which has produced a 25-year toxic contaminant time trend series for nearshore biota in Washington State. Staff and volunteers sampled mussels at 90% of the MW sites listed in a Mussel Watch - Phase 1 Quality Assurance Project Plan (QAPP) developed for this study and only two sites were dropped due to a lack of mussels. In addition, volunteers from the Snohomish County Marine Resources Committee and the Stillaguamish Tribe collected mussels at five sites in Snohomish County not originally listed on the QAPP. After collection all the mussels were sent to contracted analytical laboratories with the agreement that the MW program would finance immediate analyses of mussels from a subset of stations prioritized by WDFW staff, and archive the remaining samples for later analysis.

2.0 INTRODUCTION

Marine mussels (*Mytilus* spp.) have been used by the National Oceanic and Atmospheric Administration’s (NOAA) national Mussel Watch (MW) program to monitor toxic contaminants in Washington State since 1986. Mussel Watch sampling occurs biennially at approximately 17 locations across the Puget Sound and 3 locations along Washington’s Pacific Coast. The NOAA MW program has been an important complement to ongoing contaminant monitoring efforts already underway in Washington State’s marine and estuarine waters. Washington Department of Fish and Wildlife’s Puget Sound Ecosystem and Monitoring Program (PSEMP, formerly PSAMP) – Toxics in Biota team has long reported MW data and results along with status and trends information from its own sentinel species, primarily finfish, to present a more complete contaminant status and trends story for Washington State.

Over the past three years the Toxics in Biota team has worked with NOAA to adapt and expand the core MW sampling design, in order to better accommodate regional needs and interests. However, due to a funding shortfall NOAA was unable to conduct its scheduled MW field sampling in Washington State stations during the winter of 2011/12. In order to avoid a break in this valuable long-term, nearshore contaminant data set the Toxics in Biota team partnered with NOAA MW to collect mussels in Washington from December 2011 through March 2012. After collection the mussels were sent to NOAA contracted analytical laboratories with the agreement that the MW program would pay for immediate analyses of mussels from a subset of stations and archive the remaining samples for later analysis, as funds become available.

2.1 OBJECTIVES

The objective of this project was to sample mussels at 20 sites in Washington State for the national MW program during the winter field season of 2011/12 (December 2011 – March 2012). Sampling these sites allowed for the maintenance of the 25-year time trend series for contaminants in nearshore biota in Washington State, which will serve to inform various Puget Sound management activities over the long term. These MW data, as well as the results of a 2009/10 MW pilot study, will be used by the Toxics in Biota team to develop a plan for expanding MW into a more regionally-focused, nearshore contaminant status and trends monitoring program in Puget Sound.

3.0 METHODS

3.1 MUSSEL WATCH SITE LOCATIONS

A total of 25 sites in Washington State were visited for mussel collection between December 4, 2011 and March 12, 2012 (Table 1, Figure 1). Twenty of these MW sites are listed in the Mussel Watch - Phase 1 Quality Assurance Project Plan (QAPP, Appendix 5.1). However, an additional five sites (* in Table 1) were sampled by the Snohomish County Marine Resources Committee and the Stillaguamish Tribe. Volunteer assistance with MW is detailed in the Results section of this report.
Table 1. Sample sites visited for the national Mussel Watch program during the 2011/12 field season.

<table>
<thead>
<tr>
<th>Site Name (Code)</th>
<th>County</th>
<th>Site Center Coordinates</th>
<th>Date Sampled</th>
<th>Date Shipped</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Puget Sound, Budd Inlet (SSBI)</td>
<td>Thurston</td>
<td>Latitude: 47.09920, Longitude: -122.89475</td>
<td>12/20/2011</td>
<td>12/21/2011</td>
</tr>
<tr>
<td>Puget Sound, Edmonds Ferry (PSEF)</td>
<td>Snohomish</td>
<td>Latitude: 47.81406, Longitude: -122.38195</td>
<td>1/30/2012</td>
<td>2/1/2012</td>
</tr>
<tr>
<td>Puget Sound, Everett CEMEX (PSEC)*</td>
<td>Snohomish</td>
<td>Latitude: 48.01707, Longitude: -122.21611</td>
<td>1/30/2012</td>
<td>2/1/2012</td>
</tr>
<tr>
<td>Puget Sound, Kayak Point (PSKP)*</td>
<td>Snohomish</td>
<td>Latitude: 48.13000, Longitude: -122.36436</td>
<td>1/30/2012</td>
<td>2/1/2012</td>
</tr>
<tr>
<td>Puget Sound, Everett Harbor (PSEH)</td>
<td>Snohomish</td>
<td>Latitude: 47.97269, Longitude: -122.29325</td>
<td>1/31/2012</td>
<td>2/1/2012</td>
</tr>
<tr>
<td>Puget Sound, Hermosa Point (PSHP)*</td>
<td>Snohomish</td>
<td>Latitude: 48.06141, Longitude: -122.32556</td>
<td>1/31/2012</td>
<td>2/1/2012</td>
</tr>
<tr>
<td>Puget Sound, Hat Island (PSHI)*</td>
<td>Snohomish</td>
<td>Latitude: 48.00990, Longitude: -122.30158</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Puget Sound, Mukilteo Ferry (PSMF)</td>
<td>Snohomish</td>
<td>Latitude: 47.94968, Longitude: -122.37315</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elliott Bay, Duwamish Head (EBDH)</td>
<td>King</td>
<td>Latitude: 47.59543, Longitude: -122.38760</td>
<td>1/3/2012</td>
<td>1/4/2012</td>
</tr>
<tr>
<td>Puget Sound, Port Angeles (PSPA)*</td>
<td>Clallam</td>
<td>Latitude: 48.13967, Longitude: -123.42010</td>
<td>1/10/2012</td>
<td>1/11/2012</td>
</tr>
<tr>
<td>South Puget Sound, Kopachuck Park (SSKP)</td>
<td>Pierce</td>
<td>Latitude: 48.73009, Longitude: -122.68779</td>
<td>1/30/2012</td>
<td>1/31/2012</td>
</tr>
<tr>
<td>Point Roberts, Point Roberts (PRPR)*</td>
<td>Whatcom</td>
<td>Latitude: 48.98066, Longitude: -123.08553</td>
<td>2/4/2012</td>
<td>2/6/2012</td>
</tr>
<tr>
<td>Willapa Bay, Nahcotta (WBNA)</td>
<td>Pacific</td>
<td>Latitude: 46.49819, Longitude: -122.02704</td>
<td>2/6/2012</td>
<td>2/7/2012</td>
</tr>
<tr>
<td>Elliott Bay, Myrtle Edwards (EBME)</td>
<td>King</td>
<td>Latitude: 47.62594, Longitude: -122.37315</td>
<td>2/13/2012</td>
<td>2/14/2012</td>
</tr>
<tr>
<td>Puget Sound, Cavalero County Park (PSCC)*</td>
<td>Snohomish</td>
<td>Latitude: 48.17611, Longitude: -122.47883</td>
<td>2/14/2012</td>
<td>2/15/2012</td>
</tr>
<tr>
<td>South Puget Sound, Tolmie Park (SSTP)</td>
<td>Thurston</td>
<td>Latitude: 47.12096, Longitude: -122.77478</td>
<td>2/22/2012</td>
<td>2/22/2012</td>
</tr>
<tr>
<td>Grays Harbor, Westport Jetty (GHWJ)</td>
<td>Grays Harbor</td>
<td>Latitude: 46.91221, Longitude: -124.11745</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Additional sites sampled that were not on the original SOW for Phase 1 Mussel Watch.
Not sampled due to lack of mussels (see Section 3.3).

1 Coordinates approximated.
2 Only one replicate station sampled at this site due to lack of mussels.
Figure 1. Washington State Mussel Watch sites visited in the 2011/12 sampling season. See Table 1 for site name codes.
3.2 Sample Collection Methods

At all but two MW sites, sampling was conducted on foot in the intertidal zone. The two exceptions included the Puget Sound, Port Angeles (PSPA) site, at which a SCUBA diver collected mussels off floating buoys (a historical protocol unique to that site), and the Puget Sound, Hat Island (PSHI) site where mussels were sampled off a concrete bunker accessed by boat.

The MW protocol included collection from three replicate stations spaced between 25 – 250 meters apart, if possible, at each site (see QAPP, Appendix 5.1). Mussel collectors wore Nitrile or latex gloves while working and removed mussels from the substrate by cutting their byssal threads. The collected mussels were then rinsed, using water from the collection site, placed into labeled Ziploc bags and immediately packed in ice (alive). Samples were sent within two days of collection by FedEx to the following two NOAA MW contracted laboratories: B & B Laboratories in Texas (for contaminant analysis) and Rutger’s Haskin Shellfish Laboratory in New Jersey (for histopathology). Laboratory staff indicated that all samples arrived in good condition.

Field parameters determined at each MW replicate station (three per site) included latitude and longitude GPS coordinates, water temperature (°C) and salinity (ppt). GPS coordinates were also recorded for the “site center”, which was usually at a location central to sampling (Table 1). In addition, descriptions of the weather, any potential sources of contamination, the physical location of each replicate station and the substrate from which mussels were collected were recorded and photos were taken. Copies of the datasheets with field measurements and notes are included in Appendices 5.2 – 5.24.

3.3 Cancelations, Additions, and Changes

Mussel collection at the Puget Sound, Mukilteo Ferry (PSMF) and Gray’s Harbor, Westport Jetty (GHWJ) did not occur due to a lack of mussels of sufficient size for sampling. Because of the ephemeral nature of mussel populations it is not unusual to lose one or two sites due to a lack of mussels during the MW sampling season. However, 18 of the 20 original MW sites listed in the Mussel Watch - Phase 1 QAPP were successfully sampled. In addition, five extra sites (PSEC, PSKP, PSHP, PSHI and PSCC) were successfully sampled by the Snohomish County MRC and the Stillaguamish Tribe (* in Table 1).

At the Point Roberts, Point Roberts (PRPR) site only one station (no replicates) was sampled for mussels. This happened because only one boulder within the acceptable search area at PRPR had mussels of sufficient size and numbers to allow for sampling. Mussels on other boulders and cobbles at this site were too small (<0.25 inches in length) and too few to allow for a sufficient sample.

Due to inclement weather, sampling at several sites had to be rescheduled (Table 2). Sample collection at these sites generally occurred within a three week window of the target sampling date, which is set by the NOAA MW program. The only site that was sample outside of the 3-week target window was Puget Sound, Cavalero County Park (PSCC). However PSCC is not a historic national MW program site, it was added by the Snohomish County MRC in the last decade.
Table 2. National Mussel Watch program sites where sampling was rescheduled due to inclement weather during the 2011/12 field season.

<table>
<thead>
<tr>
<th>Site Name (Code)</th>
<th>County</th>
<th>Original Date</th>
<th>Rescheduled Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puget Sound, Everett CEMEX (PSEC)</td>
<td>Snohomish</td>
<td>1/17/2012</td>
<td>1/30/2012</td>
</tr>
<tr>
<td>Puget Sound, Kayak Point (PSKP)</td>
<td>Snohomish</td>
<td>1/17/2012</td>
<td>1/30/2012</td>
</tr>
<tr>
<td>Puget Sound, Everett Harbor (PSEH)</td>
<td>Snohomish</td>
<td>1/17/2012</td>
<td>1/31/2012</td>
</tr>
<tr>
<td>Puget Sound, Hermosa Point (PSHP)</td>
<td>Snohomish</td>
<td>1/17/2012</td>
<td>1/31/2012</td>
</tr>
<tr>
<td>Puget Sound Hat, Island (PSHI)</td>
<td>Snohomish</td>
<td>1/17/2012</td>
<td>1/31/2012</td>
</tr>
<tr>
<td>Puget Sound, Mukilteo Ferry (PSMF)</td>
<td>Snohomish</td>
<td>1/17/2012</td>
<td>1/31/2012</td>
</tr>
<tr>
<td>Point Roberts, Point Roberts (PRPR)</td>
<td>Whatcom</td>
<td>1/18/2012</td>
<td>2/4/2012</td>
</tr>
<tr>
<td>Puget Sound, Cavalero County Park (PSCC)</td>
<td>Snohomish</td>
<td>1/17/2012</td>
<td>2/14/2012</td>
</tr>
<tr>
<td>South Puget Sound, Tolmie Park (SSTP)</td>
<td>Thurston</td>
<td>1/31/2012</td>
<td>2/22/2012</td>
</tr>
<tr>
<td>Grays Harbor, Westport Jetty (GHWI)</td>
<td>Grays Harbor</td>
<td>2/14/2012</td>
<td>3/13/2012</td>
</tr>
</tbody>
</table>

Not sampled due to lack of mussels (see Section 3.3).

3.4 Data Records

Project staff maintained a bound, waterproof field log notebook to record observations and experiences during MW sampling. In addition, data sheets were completed for each MW site. Copies of the completed data sheets are compiled in Appendices 5.2 – 5.24 of this report. Digital copies of these datasheets are stored in an archived PSEMP computer file and the original datasheets were put together in a binder and are kept with the original field log notebook at PSEMP headquarters.

All MW data collected in the field and resulting from laboratory analysis will be entered into an electronic database maintained by PSEMP. In addition, the NOAA MW program will enter the MW data into EPA’s STORET database.

4.0 Results

Between December 4, 2011 and March 12, 2012 Toxics in Biota staff and WDFW volunteers successfully sampled mussels at 90% of the original MW sites listed in the Mussel Watch - Phase 1 QAPP. In addition, volunteers from the Snohomish County Marine Resources Committee (MRC) and the Stillaguamish Tribe collected mussels at five other sites (* in Table 1) not listed in the QAPP. These additional five sites are not part of the historical MW program, they were added to the sampling list by Snohomish County in the last decade. The cost of their analysis will be covered by the Snohomish County MRC.

A total of 44 volunteers either lead or assisted with field collections during the 2011/12 MW field season. Volunteer groups included the Snohomish County MRC, the Seattle Aquarium, the Port Townsend Marine Science Center, the Whatcom County MRC, the Stillaguamish Tribe, the Olympic Coast National Marine Sanctuary, the North Pacific Coast MRC, and the Navy’s Environmental Investment (ENVVEST) program.
4.1 Physical Parameters

Water temperature and salinity data, generally measured at each replicate station (3 per MW site), are summarized in Table 3. Due to a change in the sampling protocol after the first several sites were already sampled as well as physical limitations at some other sites, temperature and salinity was not always measured at three replicate locations at each MW site. These sites are noted with a \(n < 3 \) on Table 3.

Variation in water temperature was rather narrow (range = 4.2°C; 4.8 – 9.0°C), while salinity appeared to vary to a much greater degree (range 32; 2.7 – 34.7ppt). Salinity was measured at MW sites during the winter and early spring months (December – March), when freshwater input from rivers draining into Washington’s inland marine waters generally peaks. This is as a result of heavy rains during the winter and/or snowmelt runoff during the spring.

Salinity at the MW sites reflected their proximity to local rivers. When sites were grouped by oceanographic basin and then ordered by increasing salinity, freshwater sources became apparent (Table 3). For instance a freshwater signal, most likely coming from the Stillaguamish River that empties into Possession Sound, can be seen in the low salinity readings from PSEC and from the nearby MW sites in Port Susan. The BBSM site also has relatively low salinity, likely due to freshwater input from the Nooksack River, which empties into Bellingham Bay. Several rivers (North, Willapa, and Naselle Rivers) empty into Willapa Bay, where another relatively low salinity reading was recorded.
Table 3. Average temperature and salinity at Washington State Mussel Watch sites sampled in 2011/12; (n) represents the number of replicate measurements taken at each site; temperature (T), salinity (S).

<table>
<thead>
<tr>
<th>Site Name (Code)</th>
<th>Temperature (°C)</th>
<th>Salinity (ppt)</th>
<th>n</th>
<th>Date Sampled</th>
<th>Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puget Sound, Port Angeles (PSPA)</td>
<td>7.2</td>
<td>33.3</td>
<td>3</td>
<td>1/10/2012</td>
<td>Strait of Juan de Fuca</td>
</tr>
<tr>
<td>Bellingham Bay, Squalicum Marina Jetty (BBSM)</td>
<td>5.7</td>
<td>10.0</td>
<td>3</td>
<td>2/3/2012</td>
<td>Strait of Georgia</td>
</tr>
<tr>
<td>Point Roberts, Point Roberts (PRPR)</td>
<td>5.0</td>
<td>31.0</td>
<td>1</td>
<td>2/4/2012</td>
<td>Strait of Georgia</td>
</tr>
<tr>
<td>Puget Sound, Kayak Point (PSKP)</td>
<td>6.0</td>
<td>11.0</td>
<td>3</td>
<td>1/30/2012</td>
<td>Port Susan</td>
</tr>
<tr>
<td>Puget Sound, Hermosa Point (PSHP)</td>
<td>7.0</td>
<td>13.0</td>
<td>3</td>
<td>1/31/2012</td>
<td>Port Susan</td>
</tr>
<tr>
<td>Puget Sound, Cavalero County Park (PSCC)</td>
<td>7.6</td>
<td>20.3</td>
<td>3</td>
<td>2/14/2012</td>
<td>Port Susan</td>
</tr>
<tr>
<td>Puget Sound, Everett CEMEX (PSEC)</td>
<td>4.8</td>
<td>2.7</td>
<td>3</td>
<td>1/30/2012</td>
<td>Possession Sound</td>
</tr>
<tr>
<td>Whidbey Island, Possession Point (WIPP)</td>
<td>7.0</td>
<td>21.0</td>
<td>1</td>
<td>12/4/2011</td>
<td>Possession Sound</td>
</tr>
<tr>
<td>Puget Sound, Everett Harbor (PSEH)</td>
<td>8.0</td>
<td>22.7</td>
<td>3</td>
<td>1/31/2012</td>
<td>Possession Sound</td>
</tr>
<tr>
<td>Puget Sound, Hat Island (PSHI)</td>
<td>7.7</td>
<td>24.0</td>
<td>T = 3, S = 1</td>
<td>1/31/2012</td>
<td>Possession Sound</td>
</tr>
<tr>
<td>Puget Sound, Port Townsend (PSPT)</td>
<td>7.0</td>
<td>34.7</td>
<td>3</td>
<td>1/8/2012</td>
<td>Admiralty Inlet</td>
</tr>
<tr>
<td>Commencement Bay, Tahlequah Point (CBTP)</td>
<td>8.3</td>
<td>27.0</td>
<td>1</td>
<td>12/6/2011</td>
<td>Central Puget Sound</td>
</tr>
<tr>
<td>Elliott Bay, Duwamish Head (EBDH)</td>
<td>9.0</td>
<td>28.0</td>
<td>3</td>
<td>1/3/2012</td>
<td>Central Puget Sound</td>
</tr>
<tr>
<td>Sinclair Inlet, Waterman Point (SIWP)</td>
<td>9.0</td>
<td>30.0</td>
<td>1</td>
<td>12/5/2011</td>
<td>Central Puget Sound</td>
</tr>
<tr>
<td>Elliott Bay, Myrtle Edwards (EBME)</td>
<td>8.0</td>
<td>30.3</td>
<td>3</td>
<td>2/13/2012</td>
<td>Central Puget Sound</td>
</tr>
<tr>
<td>Puget Sound, Edmonds Ferry (PSEF)</td>
<td>8.0</td>
<td>31.0</td>
<td>3</td>
<td>1/30/2012</td>
<td>Central Puget Sound</td>
</tr>
<tr>
<td>Elliott Bay, Four-Mile Rock (EBFR)</td>
<td>9.0</td>
<td>33.0</td>
<td>1</td>
<td>12/6/2011</td>
<td>Central Puget Sound</td>
</tr>
<tr>
<td>South Puget Sound, Kopachuck Park (SSKP)</td>
<td>7.5</td>
<td>30.0</td>
<td>3</td>
<td>1/30/2012</td>
<td>South Puget Sound</td>
</tr>
<tr>
<td>South Puget Sound, Tolmie Park (SSTP)</td>
<td>9.0</td>
<td>30.3</td>
<td>3</td>
<td>2/22/2012</td>
<td>South Puget Sound</td>
</tr>
<tr>
<td>South Puget Sound, Budd Inlet (SSBI)</td>
<td>8.8</td>
<td>32.0</td>
<td>3</td>
<td>12/20/2011</td>
<td>South Puget Sound</td>
</tr>
<tr>
<td>Puget Sound, Hood Canal (PSHC)</td>
<td>8.2</td>
<td>31.3</td>
<td>3</td>
<td>1/9/2012</td>
<td>Hood Canal</td>
</tr>
<tr>
<td>Willapa Bay, Nahcotta (WBNA)</td>
<td>7.5</td>
<td>21.0</td>
<td>2</td>
<td>2/6/2012</td>
<td>Pacific Coast</td>
</tr>
<tr>
<td>Juan de Fuca Strait, Cape Flattery (JFCF)</td>
<td>8.0</td>
<td>34.0</td>
<td>3</td>
<td>3/6/2012</td>
<td>Pacific Coast</td>
</tr>
</tbody>
</table>
4.2 Priority Sites for Analysis

Per an agreement with NOAA, we requested that a subset of the MW sites listed in the QAPP and sampled in Washington State be marked as high priority for chemical and histopathological analyses (Table 4). We expect to see the results of analysis for those sites within one year of submission to the laboratories. Mussel Watch samples from the remaining Washington State sites will be archived until NOAA funds become available for their analysis as well.

Table 4. List of Washington State Mussel Watch sites labeled as high priority for chemical and histopathological analyses.

<table>
<thead>
<tr>
<th>Site Name (Acronym)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliott Bay, Myrtle Edwards (EBME)</td>
</tr>
<tr>
<td>Elliott Bay, Duwamish Head (EBDH)</td>
</tr>
<tr>
<td>Elliott Bay, Four-Mile Rock (EBFR)</td>
</tr>
<tr>
<td>Puget Sound, Everett Harbor (PSEH)</td>
</tr>
<tr>
<td>Commencement Bay, Tahlequah Point (CBTP)</td>
</tr>
<tr>
<td>South Puget Sound, Budd Inlet (SSBI)</td>
</tr>
<tr>
<td>Puget Sound, Port Townsend (PSPT)</td>
</tr>
<tr>
<td>Puget Sound, Hood Canal (PSHC)</td>
</tr>
<tr>
<td>Bellingham Bay, Squalicum Marina Jetty (BBSM)</td>
</tr>
<tr>
<td>South Puget Sound, Tolmie Park (SSTP)</td>
</tr>
</tbody>
</table>
Quality Assurance Project Plan

Toxic Contaminant Monitoring in Mussels: Phase 1

Publication ##, December 14, 2011

Prepared by

Jennifer Lanksbury and James West

Washington State Department of Fish and Wildlife
Marine and Nearshore Protection and Restoration Program

Prepared for and Funded by the
U.S. Environmental Protection Agency

Grant Number PC-00J29801-0
14 Publication Information

This study was funded by grant money from the National Estuary Program of the U.S. Environmental Protection Agency, with in-kind contributions from: Washington Department of Fish and Wildlife (Puget Sound Assessment and Monitoring Program), Snohomish County Marine Resources Committee, Washington Sea Grant, National Oceanic and Atmospheric Administration, Grays Harbor County Marine Resources Committee, Olympic Coast National Marine Sanctuary, Pacific County Marine Resources Committee, Port Townsend Marine Science Center, Seattle Aquarium, Whatcom County Marine Resources Committee, US Navy Marine Environmental Support Office, and a number of citizen science volunteers across western Washington.

15 Author and Contact Information

Jennifer Lanksbury
Washington Department of Fish and Wildlife
Jennifer.Lanksbury@dfw.wa.gov
360-902-2820

James West
Washington Department of Fish and Wildlife
james.west@dfw.wa.gov
phone 1: (360) 902-2842
phone 2: (206) 302-2427
Quality Assurance Project Plan

Toxic Contaminant Monitoring in Mussels: Phase 1

December 2011

Approved by:

Signature: ____________________________ Date: __________
Patricia Jatczak, Client

Signature: ____________________________ Date: __________
Margen Carlson, Client’s Supervisor/Manager

Signature: ____________________________ Date: __________
James West, Author/Project Manager

Signature: ____________________________ Date: __________
Jennifer Lanksbury, Author/Principal Investigator

Signature: ____________________________ Date: __________
Craig Burley, Author’s Supervisor/Manager

Signature: ____________________________ Date: __________
William Kammin, Quality Assurance Officer, Washington State Department of Ecology
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Abstract</td>
<td>5</td>
</tr>
<tr>
<td>3.0</td>
<td>Background</td>
<td>6</td>
</tr>
<tr>
<td>4.0</td>
<td>Project Description</td>
<td>7</td>
</tr>
<tr>
<td>5.0</td>
<td>Organization and Schedule</td>
<td>8</td>
</tr>
<tr>
<td>6.0</td>
<td>Quality Objectives</td>
<td>10</td>
</tr>
<tr>
<td>7.0</td>
<td>Sampling Process Design (Experimental Design)</td>
<td>12</td>
</tr>
<tr>
<td>8.0</td>
<td>Sampling Procedures</td>
<td>15</td>
</tr>
<tr>
<td>9.0</td>
<td>Measurement Methods</td>
<td>20</td>
</tr>
<tr>
<td>10.0</td>
<td>Quality Control (QC) Procedures</td>
<td>22</td>
</tr>
<tr>
<td>11.0</td>
<td>Data Management Procedures</td>
<td>22</td>
</tr>
<tr>
<td>12.0</td>
<td>Audits and Reports</td>
<td>23</td>
</tr>
<tr>
<td>13.0</td>
<td>Data Verification</td>
<td>23</td>
</tr>
<tr>
<td>14.0</td>
<td>Data Quality (Usability) Assessment</td>
<td>23</td>
</tr>
<tr>
<td>15.0</td>
<td>References</td>
<td>24</td>
</tr>
<tr>
<td>16.0</td>
<td>Figures</td>
<td>25</td>
</tr>
<tr>
<td>17.0</td>
<td>Tables</td>
<td>25</td>
</tr>
<tr>
<td>18.0</td>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>Appendix A</td>
<td>Mussel Sampling Equipment/Supply List</td>
<td>26</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Sample Data Sheet</td>
<td>27</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Sample Bag Labels</td>
<td>28</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Sample Chain of Custody Form</td>
<td>29</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Using and calibrating a salinity refractometer</td>
<td>30</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Thermometer Accuracy Check: Ice Point Method</td>
<td>32</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Mussel Watch Analyte List</td>
<td>33</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Glossary, Acronyms and Abbreviations, Units</td>
<td>35</td>
</tr>
</tbody>
</table>
Distribution List

Patricia Jatczak
Puget Sound Marine & Nearshore EPA Grant Program Manager
Washington Department of Fish and Wildlife
1111 Washington St
Olympia, WA 98501-1091
(360) 902-2597
Patricia.Jatczak@dfw.wa.gov

Margen Carlson
Puget Sound Policy Lead
Washington Department of Fish and Wildlife
1111 Washington St
Olympia, WA 98501-1091
(360) 902-2229
Margen.Carlson@dfw.wa.gov

Brad Sele
Operations Manager
Washington Department of Fish and Wildlife
1111 Washington St
Olympia, WA 98501-1091
(360) 902-2778
Brad.Sele@dfw.wa.gov

Margaret McKeown
Puget Sound Marine & Nearshore EPA Grant Program Manager
Washington Department of Natural Resources
1111 Washington Street SE
Olympia, WA 98504-7000
(360) 902-1072
Margaret.Mckeown@dnr.wa.gov

Dennis Apeti, PhD
Physical Scientist
National Oceanic and Atmospheric Administration
National Centers for Coastal Ocean Science - Mussel Watch Program
(301) 713-3028 x132
dennis.apeti@noaa.gov
Kathleen Herrmann
Marine Resources Program Manager
Snohomish County Public Works, Surface Water Management Division
3000 Rockefeller Ave.
Everett, WA 98201
(425) 388-6414
kathleen.herrmann@co.snohomish.wa.us

Janice Mathisen
Community Outreach Coordinator
Seattle Aquarium
1483 Alaskan Way
Seattle, WA 98101
(206) 386-4365
J.Mathisen@seattleaquarium.org

Jean Walat
Citizen Science/Volunteer Coordinator
Port Townsend Marine Science Center
Fort Worden State Park
532 Battery Way
Port Townsend, WA 98368
(360) 385-5582 x112
JWalat@ptmsc.org

William Kammin (QA Officer) and Tom Gries (NEP QC Coordinator)
Ecology, PO Box 4600, Olympia, WA 98504-7600
(360) 407-6964 and (360) 407-6327
Wkam461@ecy.wa.gov and tgri461@ecy.wa.gov

2.0 Abstract

The primary objective of this study is to collect blue mussels (*Mytilus* spp.) in support of the national NOAA Mussel Watch Program, to satisfy sampling requirements for the 2011/2012 winter season. This effort is meant to fill a gap in an otherwise 25-year progression of monitoring toxic contaminants in selected nearshore locations in Puget Sound. WDFW will collect mussels from approximately twenty locations in Puget Sound (including three reference areas along the Washington Coast). Custody of the samples will then be transferred to NOAA for histopathological and chemical analysis.

This project is the first phase of an effort to expand contaminant monitoring in nearshore habitats of Puget Sound. Although contaminants in several species of marine and anadromous fish have been monitored by WDFW’s Puget Sound Assessment and Monitoring Program (PSAMP) for over 20 years, tracking the status of contaminants in nearshore biota has been lacking. A separate scope of work is currently being developed to take the next steps towards augmenting NOAA’s mussel coverage in nearshore waters, with the ultimate goal of developing a broad network of sampling locations and stakeholder-partners to track contaminant conditions in nearshore waters. It is also intended that these efforts will ultimately link to Ecology’s Stormwater Work Group in support of their draft municipal stormwater permit (see appendix 12 and Appendix 10 of Phase 1 and Phase 2 permits). Additionally, a companion field-based effort evaluating the extent and magnitude of chemical contamination in submerged aquatic vegetation is concurrently being developed by WADNR.
3.0 Background

The Washington Department of Fish and Wildlife (WDFW) has played a central role in evaluating the status and trends of toxic contaminants in the Puget Sound Ecosystem since 1989. As a participant in the Puget Sound Assessment and Monitoring Program (PSAMP), WDFW has tracked contaminants of concern in key species in the ecosystem, identifying where harm to biota has occurred, the extent and magnitude of problems, and whether conditions are improving or degrading. This work informs decisions regarding best management practices for prevention, control and cleanup of contaminants in Puget Sound.

Contaminant conditions in nearshore biota have long been recognized as a gap in coverage for contaminant monitoring in Puget Sound. Because Puget Sound’s nearshore waters receive stormwater, groundwater, and other sources of terrestrial pollution, these habitats and their resident biota can be exposed to high contaminant loads. Understanding the fate and transport of chemical contaminants in these waters, especially relative to their infiltration of the marine food web, is needed to make cost-effective decisions regarding mitigation of the harm pollution causes Puget Sound’s biota.

Blue mussels (*Mytilus* spp.) and other sessile, filter-feeding bivalves have been used to monitor water quality and the health of nearshore ecosystems worldwide. The National Oceanic and Atmospheric Administration’s (NOAA) national Mussel Watch program (MW) has been active in Puget Sound since 1986, sampling mussels in approximately 17 locations across the Salish Sea (20 locations including the Pacific Coast) (Figure 2). The MW program monitors the status and trends of chemical contaminants in all US coastal waters (nearly 300 sites around the country) through biennial collection and analysis of mussels and/or oysters, depending on their availability and location. Mussel Watch has been an important complement to Washington’s ongoing contaminant monitoring efforts and PSAMP scientists have placed a high value on the utility of MW for regional contaminant assessments. PSAMP has long reported MW data and results, along with status and trends information from its own sentinel species, to present a more complete contaminant status and trends story for Washington State.

In recent years NOAA has sought sampling partnerships with State and local entities to promote the relevance of its program at regional levels and help ensure its long-term viability. PSAMP staff partnered with the MW in 2009 and 2010 to conduct field sampling of MW sites in Washington. The MW sites, as well as three additional sites added by PSAMP staff, were successfully sampled and NOAA covered the laboratory costs for chemical and histopathological analysis of all samples. The results of this work are documented in Lanksbury et al. (2010).

NOAA has approached PSAMP staff again for assistance in collecting samples for the 2011/12 field season. Although the ultimate goal of PSAMP is to develop an expanded Mussel Watch-type observation program in Puget Sound, the scope of work for this QAPP is limited to field sampling of MW program sites during the current 2011/12 sampling season (December 2011 - March, 2012).
4.0 Project Description

The project described in this QAPP is limited to field work only. The goal of this project is to fill a monitoring gap, in an otherwise 25-year progression of monitoring toxic contaminants in select nearshore locations in Puget Sound, by sampling for the 2011/12 MW program field season. To accomplish this goal, our objective is to collect whole mussel samples from up to 20 established MW sites, including multiple locations around the Salish Sea and three outer coast sites, and send those samples to two NOAA-contracted laboratories, which have a long history of participation in the MW program, for analysis. Tracking, processing, and analysis of samples (both chemical and histopathological) will be the responsibility of, and paid for by, NOAA. Field and laboratory analytical methods will follow NOAA’s protocols.

Key points of the WDFW field sampling plan include:

- Use the existing PSAMP Toxics in Fish program as a platform for infrastructure and operational support
- Coordinate with existing local Mussel Watch-type programs that will sample at MW sites local to them:
 - Snohomish County’s Marine Resources Committee (SCMRC)
 - US Navy’s ENVironmental inVESTment (ENVVEST) program
- Rely on a network of citizen science volunteers to assist in field sampling at select MW sites
- Send samples to NOAA for chemical and histopathological analysis of samples

Bivalves collected for this study will typically include blue mussels; *Mytilus galloprovincialis* /trossulus and *M. californianus* (Figure 1). Following the Mussel Watch sampling protocol, mussel populations will be sampled during their reproductively quiescent period, prior to spawning, over the winter months (December to March), to avoid variability in contaminant tissue residues related to reproduction.

Figure 1. *Mytilus galloprovincialis*/trossulus (top) and *M. californianus* (bottom). Photo courtesy of National Mussel Watch Program unpublished report.
At each MW sampling site live mussels will be collected at three replicate locations (stations) using the MW sampling protocol described in Sections 0 and □. Depending on the size of mussels available, between 210 to 660 individual mussels will be collected in total at each MW site. The mussels will be shipped live via overnight express, on ice, to the NOAA-contracted laboratories.

5.0 Organization and Schedule

Management of the project will be carried out by PSAMP’s Toxics in Fish lead, James E. West, and the project work will be carried out by a WDFW Fish Biologist (Jennifer Lanksbury). All work will be supported by existing PSAMP staff and resources, as well as volunteer organizations and affiliated citizen science volunteers.

Setting the project schedule will necessitate assessment of appropriate low-tide targets for sampling. Sampling dates must fall within a three-week target collection date for each site, as set by the MW program (Table 2). After selection of target sample dates/times, PSAMP staff will coordinate with former MW volunteer organizations for assistance with sampling, where possible.

Sampling limitations include frequent night-time sampling (low tides in the winter frequently occur after sunset) and availability of volunteers. Sampling at several of the more remote MW sites (i.e. PRPR, BBSM, WBNA, GHWJ, and JFCF; see Table 3) will require overnight stays in local hotels or other accommodations. In addition, as volunteer participation may vary between sites, additional PSAMP staff may be required to complete sampling at some locations.

Table 1. Projected budget for 2011/12 Mussel Watch sampling.

<table>
<thead>
<tr>
<th>Object</th>
<th>Cost per Unit</th>
<th>No. of Units</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio 3 Salary</td>
<td>$4,627</td>
<td>1.5</td>
<td>$6,941</td>
</tr>
<tr>
<td>Technician Salary</td>
<td>$2,971</td>
<td>1.0</td>
<td>$2,971</td>
</tr>
<tr>
<td>Bio 3 Benefits</td>
<td>$1,707</td>
<td>1.5</td>
<td>$2,561</td>
</tr>
<tr>
<td>Technician Benefits</td>
<td>$1,460</td>
<td>1.0</td>
<td>$1,460</td>
</tr>
<tr>
<td>Computer lease</td>
<td>$45</td>
<td>1.5</td>
<td>$68</td>
</tr>
<tr>
<td>Site Lead Support Contracts</td>
<td>$1,000</td>
<td>3</td>
<td>$3,000</td>
</tr>
<tr>
<td>Travel</td>
<td></td>
<td></td>
<td>$2,000</td>
</tr>
<tr>
<td>Volunteer supplies</td>
<td></td>
<td></td>
<td>$1,000</td>
</tr>
<tr>
<td>Shipping/supplies</td>
<td>$145</td>
<td>20</td>
<td>$2,900</td>
</tr>
<tr>
<td>SubTotal</td>
<td></td>
<td></td>
<td>$22,900</td>
</tr>
<tr>
<td>Indirect (23.51%)</td>
<td>0.2351</td>
<td></td>
<td>$5,384</td>
</tr>
<tr>
<td>SubTotal</td>
<td></td>
<td></td>
<td>$28,283</td>
</tr>
</tbody>
</table>
Table 2. Mussel Watch (MW) site sampling schedule for 2011/12 field season. Standard MW protocol indicates that sites should be sampled within a three week window on either side of the target collection date. See Figure 2 map.

<table>
<thead>
<tr>
<th>Site Name (Code)</th>
<th>MW Target Collection Date</th>
<th>2011/12 Target Sample Date</th>
<th>Staff and/or Volunteers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whidbey Island, Possession Point (WIPP)</td>
<td>11-Dec</td>
<td>4-Dec-2011</td>
<td>PSAMP</td>
</tr>
<tr>
<td>Sinclair Inlet, Waterman Point (SIWP)</td>
<td>11-Dec</td>
<td>5-Dec-2011</td>
<td>PSAMP, ENVVEST</td>
</tr>
<tr>
<td>Elliott Bay, Four-Mile Rock (EBFR)</td>
<td>11-Dec</td>
<td>6-Dec-2011</td>
<td>Seattle Aquarium</td>
</tr>
<tr>
<td>Commencement Bay, Tahlequah Point (CBTP)</td>
<td>11-Dec</td>
<td>6-Dec-2011</td>
<td>PSAMP</td>
</tr>
<tr>
<td>South Puget Sound, Budd Inlet (SSBI)</td>
<td>5-Jan</td>
<td>20-Dec-2011</td>
<td>PSAMP</td>
</tr>
<tr>
<td>Puget Sound, Edmonds Ferry (PSEF)</td>
<td>22-Dec</td>
<td>17-Jan-2012</td>
<td>SCMRC (5 days outside collection target)</td>
</tr>
<tr>
<td>Puget Sound, Everett Harbor (PSEH)</td>
<td>9-Jan</td>
<td>17-Jan-2012</td>
<td>SCMRC</td>
</tr>
<tr>
<td>Puget Sound, Mukilteo Ferry (PSMF)</td>
<td>21-Dec</td>
<td>17-Jan-2012</td>
<td>SCMRC (5 days outside collection target)</td>
</tr>
<tr>
<td>Elliott Bay, Duwamish Head (EBDH)</td>
<td>9-Jan</td>
<td>3-Jan-2012</td>
<td>PSAMP, Seattle Aquarium</td>
</tr>
<tr>
<td>Puget Sound, Port Townsend (PSPT)</td>
<td>8-Jan</td>
<td>8-Jan-2012</td>
<td>PSAMP, PTMSC</td>
</tr>
<tr>
<td>Puget Sound, Hood Canal (PSHC)</td>
<td>8-Jan</td>
<td>9-Jan-2012</td>
<td>PSAMP, PTMSC</td>
</tr>
<tr>
<td>Puget Sound, Port Angeles (PSPA)</td>
<td>8-Jan</td>
<td>10-Jan-2012</td>
<td>PSAMP, Icicle Seafoods</td>
</tr>
<tr>
<td>Point Roberts, Point Roberts (PRPR)</td>
<td>10-Jan</td>
<td>16-Jan-2012</td>
<td>PSAMP</td>
</tr>
<tr>
<td>Bellingham Bay, Squalicum Marina Jetty (BBSM)</td>
<td>9-Jan</td>
<td>17-Jan-2012</td>
<td>PSAMP, WCMRC</td>
</tr>
<tr>
<td>South Puget Sound, Kopachuck Park (SSKP)</td>
<td>5-Feb</td>
<td>30-Jan-2012</td>
<td>PSAMP</td>
</tr>
<tr>
<td>South Puget Sound, Tolmie Park (SSTP)</td>
<td>7-Feb</td>
<td>31-Jan-2012</td>
<td>PSAMP</td>
</tr>
<tr>
<td>Willapa Bay, Nahcotta (WBNA)</td>
<td>6-Feb</td>
<td>6-Feb-2012</td>
<td>PSAMP, PCMSC</td>
</tr>
<tr>
<td>Elliott Bay, Myrtle Edwards (EBME)</td>
<td>22-Feb</td>
<td>13-Feb-2012</td>
<td>PSAMP, Seattle Aquarium</td>
</tr>
<tr>
<td>Grays Harbor, Westport Jetty (GHWJ)</td>
<td>21-Feb</td>
<td>14-Feb-2012</td>
<td>PSAMP, PCMSC</td>
</tr>
<tr>
<td>Juan de Fuca Strait, Cape Flattery (JFCF)</td>
<td>3-March</td>
<td>6-March-2012</td>
<td>PSAMP, PCMSC, OCNMS, Makah Tribe</td>
</tr>
</tbody>
</table>

ENVVEST – ENVironmental inVESTment (US Navy program) volunteers
SCMRC – Snohomish County Marine Resources Committee volunteers
PTMSC – Port Townsend Marine Science Center volunteers
WCMRC – Whatcom County Marine Resources Committee volunteers
PCMSC – Pacific County Marine Resources Committee volunteers
OCNMS – Olympic Coast National Marine Sanctuary volunteers
6.0 Quality Objectives

Sections 6.5 and 6.6 need some work - there is confusion re: definition of sensitivity and bias.

6.1 Measurement Quality Objectives

Following are the field sampling measurement quality objectives for NOAA’s MW program (Table 3).

Table 3. Measurement quality objectives (MQOs) for NOAA’s Mussel Watch Program

<table>
<thead>
<tr>
<th>Field Measurement</th>
<th>MQOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity</td>
<td>± 1.0 ppt</td>
</tr>
<tr>
<td>Temperature</td>
<td>± 1.0 ºC</td>
</tr>
<tr>
<td>GPS coordinates</td>
<td>0.000001 decimal degrees (0.111 m/0.364 ft)</td>
</tr>
</tbody>
</table>

ppt = permille, parts per thousand (%), grams salt/kilogram solution
ºC = degrees Celsius

Although the MW program asks for GPS coordinates to the nearest 0.000001 decimal degrees (0.111 m/0.364 ft), the hand-held GPS units (Garmin, GPSmap 76C, and GPSmap 176) available to PSAMP staff report coordinates to the nearest 0.00001 decimal degrees (1.11 m/3.64 ft). The GPS coordinates for each station (replicate) represent the central point of a collection area; mussels are collected from a number of rocks/boulders/etc. around the station center (see Section 8.1 Field measurement and sample collection SOP). In addition, stations (replicates) are to be located a distance of 25 – 250 meters (82 – 820 feet) from one another, whenever possible. Given these parameters, we assert that a GPS position reported to the nearest 0.00001 decimal degrees (1.11 m/3.64 ft) will provide adequate representation of the physical location of collected mussels.

Once the mussels are collected and shipped to the NOAA-contracted laboratories, they will no longer be under PSAMP control. At that point the NOAA Mussel Watch program and its contracted labs will have control of the samples and take responsibility for any further measurement quality objectives (i.e. laboratory MQOs). Data quality assurance associated with NOAA’s Mussel Watch Program is described by Cantillo (1995).

6.2 Comparability

Mussel samples collected in this field season will be directly comparable with mussels collected at the same MW sites over the last 25 years, because we will be following the same standardized sampling techniques and methods for the timing of collection, distribution of stations (replicates) and handling of mussels that have been used by MW scientists/field workers since 1986. All staff and citizen science volunteers are trained to ensure consistency. The program used to train citizen science volunteers in the Mussel Watch sampling techniques is described in Lanksbury et al (2010).

6.3 Representativeness

Mussels from each Washington MW site will be representative of environmental conditions in the winter season at that site. Mussels will be taken from naturally occurring populations and are meant to represent ambient conditions at each site. For this reason mussels will not be collected directly off
creosote-treated wood. Following the standard MW protocol, mussel samples will be collected from three separate stations (replicates) at each site. When feasible, replicates will be located between 25 – 250 meters (82 – 820 feet) from one another, to avoid sampling a single non-representative “clump” of mussels at any one site.

6.4 Completeness

Population density and individual mussel sizes can vary greatly at any one location over time. Lack of sufficient mussels at MW sites in the past has led to cancellation of sampling at those sites in select years. This study will be considered a success if 18 of the 20 MW sites (i.e. 90% of those listed on Table 1) are collected and shipped to the NOAA-contracted laboratories.

6.5 Sensitivity

Although the MW program sampling protocol calls for GPS coordinates to the nearest 0.000001 decimal degrees (0.111 m/0.364 ft), the GPS accuracy required is not specified. Hand-held GPS units (Garmin, GPSmap 76C, and GPSmap 176) used by PSAMP staff report coordinates to the nearest 0.00001 decimal degrees (1.11 m/3.64 ft) and each have a position accuracy of <15 m (49 ft), 95% typical. Although greater accuracy, 3-5 m (10-16 ft, 95% typical), can be achieved using differential GPS (DGPS), additional equipment and training would be required to use DGPS. Future efforts at developing a broad network of sampling locations, to augment NOAA’s mussel coverage in nearshore waters, will involve investigation of DGPS as a potential improvement in GPS accuracy.

6.6 Bias

In order to minimize bias between the population mean and the true value, mussel samples will be collected from three separate stations (replicates) at each site. When feasible, replicates will be located between 25 – 250 meters (82 – 820 feet) from one another, to avoid sampling a single non-representative “clump” of mussels at any one site. In addition, to avoid bias from point sources of contaminants, no mussels will be collected from creosote treated surfaces (i.e. creosote pilings or logs). This describes sampling bias but not instrument.

In order to minimize instrument bias, the refractometers (ZGRS-10ATC Illumination Refractometer) used to measure salinity, and the mercury or alcohol thermometers use to measure temperature will be checked and calibrated at the beginning of the field season, before measurements are taken in the field. Since the optical components of a refractometer can change slightly at different temperatures, refractometer calibration will be checked (i.e. verify it reads 0 for distilled water) once at every site, before field readings are taken. Instructions on how to use and calibrate the refractometer used in this study are described in Appendix E. Instructions on how to check a mercury or alcohol thermometer, using the ice-point method (Strouse et al. 2010), are detailed in Appendix F.

6.7 Precision

At each station (replicate sampling location), water temperature and salinity will be recorded so that three replicate measurements of each parameter will be made for every Mussel Watch site (see Mussel Watch Program Data Sheets in Appendix B). Acceptable precision of salinity and temperature measurements will fall within ± 1.0 ppt and ± 1.0 °C respectively.
7.0 Sampling Process Design (Experimental Design)

7.1 Study Design

The mussel species *Mytilus galloprovincialis/trossullus* and *M. californianus* are typically found at MW sites in Washington State. Either species is acceptable for use by the MW program. Mussel Watch sites are typically located 10 - 100 km apart along US coastlines, in shellfish beds large enough to sustain repeated sampling. National MW monitoring sites were selected by NOAA to provide an assessment of the ambient conditions over broad coastal areas, to allow comparison among very large water bodies. Hence municipal sewage outfalls, industrial effluents, and other known point pollution sources are avoided. In addition, only naturally occurring bivalves are collected from natural substrates or concrete; creosote- or other treated pilings are avoided. The distribution of bivalves is not manipulated with transplantation.

Mussels are sampled during their reproductively quiescent winter months, (prior to spawning) to avoid variability in contaminant tissue residues related to reproduction. They are collected from intertidal zones by hand and removed from their substrates by cutting their byssal threads. The collected bivalves are then rinsed, using water from the collection site, and immediately packed in ice to keep the samples alive until they reach the laboratory. Samples are shipped within two days of collection to NOAA-contracted analytical laboratories for analysis of chemical contaminants and for assessment of gonadal index and histopathology.

Analyses at these labs will include determination of over 140 chemical contaminant residues in the soft tissues. Of the more than 140 organic compounds and metals included in MW analyses, approximately 17 are toxic trace elements, including metals and metalloids. The organic compounds regularly quantified by the program include polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dichloro-diphenyl-trichloro-ethane (DDT) and its metabolites, organo-tins, chlordane, Dieldrin and its related compounds, hexachlorocyclohexanes (HCHs), and various other chlorinated pesticides (see Appendix E for list of analytes). The MW program also assesses the gonadal index and histopathology of sampled mussels. The gonadal index/ histopathology component verifies reproductive state and measures the prevalence of nearly 70 diseases and parasites.

We wish to emphasize here that once the mussels have been collected and shipped to the NOAA-contracted laboratories they will no longer be under PSAMP control. *At that point the MW program and NOAA-contracted labs will have control of the samples and responsibility for analyzing them, verifying/validating the results, determining data usability, and entering the results into the Environmental Protection Agency’s (EPA) Storage and Retrieval (STORET) database. Although the MW program has guaranteed that the final data generated by this effort will be made available to EPA’s STORET database, the timing of submission of samples for chemical analysis will be subject to availability of NOAA funds, and maximum turnaround time for chemical analysis of data generated from these samples will be approximately one year from time of submission.*
Table 4. Location of Mussel Watch site centers (GPS datum set to NAD 1983). Samples are collected on a biennial basis (once every two years in the winter months). See Figure 2 map.

<table>
<thead>
<tr>
<th>Site Name (Code)</th>
<th>County</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whidbey Island, Possession Point (WIPP)</td>
<td>Island</td>
<td>47.90568</td>
<td>-122.37722</td>
</tr>
<tr>
<td>Sinclair Inlet, Waterman Point (SIWP)</td>
<td>Kitsap</td>
<td>47.55083</td>
<td>-122.62700</td>
</tr>
<tr>
<td>Elliott Bay, Four-Mile Rock (EBFR)</td>
<td>King</td>
<td>47.63917</td>
<td>-122.41230</td>
</tr>
<tr>
<td>Commencement Bay, Tahlequa Point (CBTP)</td>
<td>King</td>
<td>47.33583</td>
<td>-122.50160</td>
</tr>
<tr>
<td>South Puget Sound, Budd Inlet (SSBI)</td>
<td>Thurston</td>
<td>47.10050</td>
<td>-122.91210</td>
</tr>
<tr>
<td>Puget Sound, Edmonds Ferry (PSEF)</td>
<td>Snohomish</td>
<td>47.81398</td>
<td>-122.38229</td>
</tr>
<tr>
<td>Puget Sound, Everett Harbor (PSEH)</td>
<td>Snohomish</td>
<td>47.97383</td>
<td>-122.23700</td>
</tr>
<tr>
<td>Puget Sound, Mukilteo Ferry (PSMF)</td>
<td>Snohomish</td>
<td>47.94968</td>
<td>-122.30158</td>
</tr>
<tr>
<td>Elliott Bay, Duwamish Head (EBDH)</td>
<td>King</td>
<td>47.57583</td>
<td>-122.41800</td>
</tr>
<tr>
<td>Puget Sound, Port Townsend (PSPT)</td>
<td>Jefferson</td>
<td>48.10300</td>
<td>-122.76500</td>
</tr>
<tr>
<td>Puget Sound, Hood Canal (PSHC)</td>
<td>Jefferson</td>
<td>47.83167</td>
<td>-122.68660</td>
</tr>
<tr>
<td>Puget Sound, Port Angeles (PSPA)</td>
<td>Clallam</td>
<td>48.13967</td>
<td>-123.42010</td>
</tr>
<tr>
<td>Point Roberts, Point Roberts (PRPR)</td>
<td>Whatcom</td>
<td>48.98167</td>
<td>-123.02160</td>
</tr>
<tr>
<td>Bellingham Bay, Squalicum Marina Jetty (BBSM)</td>
<td>Whatcom</td>
<td>48.75417</td>
<td>-122.49950</td>
</tr>
<tr>
<td>South Puget Sound, Kopachuck Park (SSKP)</td>
<td>Pierce</td>
<td>47.3109</td>
<td>-122.68723</td>
</tr>
<tr>
<td>South Puget Sound, Tolmie Park (SSTP)</td>
<td>Thurston</td>
<td>47.12087</td>
<td>-122.7753</td>
</tr>
<tr>
<td>Willapa Bay, Nahcotta (WBN)</td>
<td>Pacific</td>
<td>46.50800</td>
<td>-124.00600</td>
</tr>
<tr>
<td>Elliott Bay, Myrtle Edwards (EBME)</td>
<td>King</td>
<td>47.62583</td>
<td>-122.37273</td>
</tr>
<tr>
<td>Grays Harbor, Westport Jetty (GHWJ)</td>
<td>Grays Harbor</td>
<td>46.91250</td>
<td>-124.11750</td>
</tr>
<tr>
<td>Juan de Fuca Strait, Cape Flattery (JFCF)</td>
<td>Clallam</td>
<td>48.33832</td>
<td>-122.68468</td>
</tr>
</tbody>
</table>

Parameters to be determined at each MW station (replicate sampling location) include field measurements of water temperature (°C) and salinity (ppt). In addition, descriptions of the current weather, site conditions (including a description of any potential sources of contamination), site conditions (including a description of the physical conditions at each replicate station), and the substrate from which mussels are collected will be recorded (see example field log in Appendix B). Photos of each MW replicate station, as well as an overview of the site when possible, will also be taken.

7.2 Assumptions underlying design

Mussel Watch sites were selected to represent large coastal areas that can be used to construct a nationwide assessment (Kimbrough et al. 2008). Sites that were selected for monitoring by MW, generally 10 to 100 km apart along the entire US coastline, are meant to represent ambient conditions within broad-scale regions of Washington State. Where possible, sites were selected to coincide with historical mussel and oyster monitoring locations from other programs, such as the EPA’s Mussel Watch sites sampled from 1976 to 1978 (Goldberg et al., 1983).

7.3 Characteristics of existing data

Data for the MW program are available through a web portal on the National Status & Trend (NS&T) Program Download Page. NOAA has also provided an assessment of the status and trends of MW program data, both regionally and by state, in several recent publications (Kimbrough et al. 2009; Kimbrough et al. 2008). The data (1986-2005) used to generate these assessment reports, and more recent data (from 2009/2010), is available at the NS&T web portal. This field sampling effort will provide data for the 2011/12 assessment year of the national MW program.
Since its inception, the field and laboratory methods for the Mussel Watch program have undergone some changes. The methods described in the next sections are equal to/consistent with the most recent NOAA protocols.

7.4 Figure 2 - Map of Mussel Watch sites to be sampled in Washington State during the 2011/12 field season. See Tables 2 or 4 for site code names.
8.0 Sampling Procedures

Field personnel will have been trained in the sampling methods specified in this QAPP and detailed in the SOP below. A description of the training program is contained in Lanksbury et al (2010). All samplers will wear Nitrile or latex gloves while handling mussels and all mussels will be rinsed on site, in local marine water, before being placed in Ziploc bags for collection.

8.1 Field measurement and sample collection SOP

Below is the Standard Operating Procedure (SOP), adapted from the MW program, which will be used for sampling (and available on-site) at all MW sites in Washington State:

1) Find the established Site Center as indicated in the MW Local Site Description using a GPS unit:
 a) Record the latitude and longitude (GPS datum set to NAD 1983) of the Site Center, or as close as you can get to it (may be offshore a bit) at the top of the Mussel Watch Data Sheet (Appendix B).
 b) Record the date, time of arrival, weather conditions, and mussel watch collectors and data recorder on data sheet (see Appendix B).
 c) Record site conditions and description, noting any sources of contamination, on back of data sheet.
 d) Record any additional observations, notes or comments in the space provided.
 e) Take an overview photo of the Site Center.

2) Establish three distinct Stations (i.e. replicate sampling locations) for mussel collection around, or to either side, of the Site Center (Figure 3):
 a) Site Center can serve as Station #1 if mussels are available there.
 b) Try spacing Stations between 25 – 250 meters (82 – 820 feet) from one another, if possible.
 c) If no mussels are found near the Site Center then search for mussels can proceed up to 800 meters (~ 3000 feet or ½ mile) from the Site Center in either direction, as long as the habitat remains consistent:

➢ IMPORTANT: The search for mussels should stop if the habitat characteristics change significantly from the Site Center. Do not proceed onto substantially different substrates or environments (e.g., if the Site Center is in marina, do not leave the marina, and vice versa).

Figure 3. Example of possible distribution of Stations (i.e. replicate sample locations) near a MW site center.
NOTE: If it is not possible to delimit three separate Stations (i.e., not enough mussels)* then collection can be spread out along the shoreline (i.e. along a transect, see Figure 4):

- Clearly note change in sampling technique on data sheet.
- Note latitude and longitude of starting and ending points of the line sampled (see Step #3 below).
- Mussels should still be separated into the three Station bags (see Step #4 below) based on relative spatial distance, to avoid sampling a single non-representative “clump”, by following along the shoreline and filling bags (see figure 4 below).

*Only choose this option if absolutely necessary.

Figure 4. Example of linear distribution of Stations (replicate sample locations) along the shoreline near MW site center.

3) At each Station (i.e. replicate sampling location):
 a) Record GPS coordinates and start time.
 b) Measure water temperature using a calibrated thermometer (mercury or alcohol) at the shoreline of the station, in approximately one foot of water.
 c) Measure salinity using a calibrated refractometer (Appendix E) at the shoreline of the station, at an approximate depth of one foot.
 d) Write a description of the Station, including, for instance, its location relative to the Site Center or other landscape features, and the type of intertidal habitat in that area.
 e) Describe the substrate to which mussels are attached (e.g., boulder, cement, pilings, sand, cobble, etc). *Be as descriptive as possible.*

 - Note: DO NOT collect from creosote-treated wood.

 f) Estimate and record the height of mussels collected, relative to the height of seawater at the time of collection (“Height of Collection” on the data sheet) and the highest overall distribution of mussels available, even if none are collected there (“Highest Distribution of Mussels” on the data sheet). See figure 5 below.

 (Note: the Height of Collection and Highest Distribution of Mussels may be the same if you are collecting mussels from the highest area in which they occur.)

Figure 5. Diagram illustrating the height of collection vs. highest distribution of mussels.
g) Take photos of the Station, its surroundings, and the substrate.
h) Collect mussels.

4) To collect mussels:
a) ALWAYS wear disposable laboratory gloves when handling mussels, bags, and bag tags.
b) At each Station (replicate location) mussels need to be collected and placed into two (2) different bags for the two (2) separate analyses:
 1. Use pre-labeled gallon Ziploc bags for mussels for chemical analysis. At each Station, collect between 50 – 200 mussels, depending on size.
 • 2 inch – 3 inch long mussels (ideal size): collect 50 mussels
 • ½ inch – 2 inch mussels: collect 100 – 150 mussels
 • Less than ½ inch mussels: collect 150 - 200 mussels
 2. Use pre-labeled quart Ziploc bags for mussels for histology analysis. At each Station collect exactly 20 mussels, independent of size.

 Be sure to use the appropriately labeled bag (Appendix C) for collections at each Station. All Ziploc bags should have WA Mussel Watch, the Site Name and Acronym, the Date, the type of analysis the bag will be sent for (i.e. CHEMISTRY or HISTOPATH) and Station # written on the outside with a Sharpie. The appropriate Rite-in-the-Rain bag tag should be placed inside each bag.

c) To collect mussels cut their byssal threads (do not tear off substrate), brush off sediment and rinse in a bucket of marine water collected near each Station.
 • Be sure to change bucket of seawater between Stations.
d) Double bag the mussels to prevent ice melt leakage from contacting the mussels.
 • Each gallon Ziploc bag with mussels goes into another gallon bag – so chemistry bag from each Station gets double bagged by itself.
 • All three quart Ziploc bags go into a single gallon bag – so histology bags from all three Stations get double bagged together into one gallon bag.
 • Place ALL sealed bags into a plastic garbage bag and immediately place on ice in a cooler. **Remember to always use gloves when handling mussels, labels, and bags.**

5) After sampling is complete, record the time on the data sheet (“Time Leave”).

6) Be sure to note on the Chain-of-Custody form (Appendix D) if the final collection of mussels changes hands between collection and shipping (i.e. if someone other than Site Lead keeps the mussels overnight before shipping).

8.2 Containers, preservation methods, holding times

Consistent with standard MW program protocols, samples will be placed in a refrigerator on ice overnight(s) before being shipping in two separate coolers to B&B Laboratories (chemistry) and Rutgers Haskin Shellfish Lab (histopathology). Coolers will be shipped via FedEx Priority Overnight either the day of collection, if collection occurs in the morning, or the next day. They should arrive the next business day to the laboratories.
Bivalves can survive in storage for many days if the conditions are properly maintained; double-bagged samples of mussels stored in coolers filled with ice works well to keep mussels alive, provided melt water is allowed to drain and does not touch the mussels. Because sampling will generally occur on Sundays through Tuesdays, shipping will occur within 24 to 48 hours of collection and arrive Tuesdays through Thursdays (i.e. the next business day) at the laboratories. However, if sampling is delayed and occurs on a Thursday through Saturday, mussels will be held over the weekend and shipped the following Monday, so as to avoid arrival at the lab on a Friday or over the weekend. No samples will be shipped to arrive on a holiday.

Below (Figure 6) are illustrated directions that will be used for packing MW samples to be shipped - note that a copy of the MW datasheet and the original Chain-of-Custody form (Appendix D) go in a Ziploc bag at the top of each cooler:

Figure 6. Instructions and photographs describing proper packaging and mailing of MW shipments to laboratories.

1) Bagged ice is placed in a layer at the bottom of the cooler.

2) Double-bagged mussel samples are placed on top of the ice layer.

3) Bags of mussels with bags of ice are layered on top of each other and the voids are filled with remaining ice. A copy of the MW datasheet and the original Chain-of-Custody form are placed into a Ziplock bag at the top of each cooler.

4) The FedEx packing label is attached to the top of the cooler using sticker backing. At least two bands of nylon fiber tape will be used to secure sides of label and seal cooler (yellow arrow). Bands of clear tape will be wrapped around the lip of the cooler (to help seal in coldness) as well as around its width.
8.3 Invasive species evaluation

All field sampling gear that comes into contact with marine water or beach sediments (i.e. boots) will be inspected after field sampling for potential invasive species. All sampling gear and equipment will be cleaned, drained, and rinsed with potable water after each sampling effort and before proceeding to the next MW site. This protocol will accomplish level one decontamination, as recommended by the WDFW Aquatic Invasive Species’ small gear decontamination protocol.

8.4 Sample ID

The MW program has established Sample IDs for each of their sites (see Tables 2 or 3), which we will use for this study.

8.5 Chain-of-custody, if required

Chain-of-custody forms (Appendix D) will be utilized for handling and shipment of all MW site samples.

8.6 Field log and data sheets

A bound, waterproof field log notebook will be maintained during the duration of the project to record observations and experiences. In addition, Mussel Watch Program Data Sheets (Appendix B) will be completed for each MW site and kept in a bound notebook at PSAMP headquarters. Data recorded at each MW site will include:

- Site name and code
- Date, time, location (latitude/longitude and datum)
- GPS Make/Model
- Weather
- Collectors and recorder
- Tidal information (tide height, time of low tide)
- Station (replicate) description, site conditions, sampling substrate
- Station (replicate) water temperature and salinity
- Height of collection and highest distribution of mussels
- Other notes/comments
9.0 Measurement Methods

9.1 Field Measurements

Field measurements will include GPS coordinates (datum NAD 1983) recording at the site center and at each station (i.e. replicate sampling location). In addition, water temperature (alcohol thermometer) and salinity (refractometer) will be recorded at each station, so that three replicate measurements of each parameter will be made for every Mussel Watch site (see Mussel Watch Program Data Sheets in Appendix B).

To address the potential for sensitivity, field instruments will be checked and calibrated before measurements are taken in the field. Instructions on how to use and calibrate the refractometer used in this study are described in Appendix E. Instructions on how to check a mercury or alcohol thermometer are detailed in Appendix F.

9.2 Laboratory Measurements

This project is limited to field work only. Once the mussels have been collected and shipped to the NOAA-contracted laboratories they will no longer be under PSAMP control. At that point the NOAA Mussel Watch program and its contracted labs will have control of the samples and responsibility for measurement methods.

The MW program uses a performance-based system approach to obtain the best possible data quality and comparability, and requires laboratories to demonstrate precision, accuracy, and sensitivity to ensure results-based performance goals and measures (Kimbrough et al. 2008). Mussel Watch contracted laboratories, analytical methods, matrices, list of analytes, number of samples, MDLs, sample preparation methods, and expected range of results are all described in NOAA documents available at online. McDonald, et al. (2006) describe methods for determination of dry weight and percent lipids in mussels.

9.2.1 Core organic contaminants

The laboratory methods required for analyzing organic compounds in mussel tissue can be found in Kimbrough, et al. (2006). In summary, to determine the organic contaminant levels in mussels, analytes are extracted, isolated, and concentrated from the soft tissues. The tissue extracts require extensive purification to remove lipids from the matrix, which cause analytical interferences. Shell length and volume are determined for all mussels collected at each sampling site. The mussels are then shucked and homogenized and aliquots of the homogenized samples are chemically dried using Hydromatrix® and extracted in dichloromethane using a Dionex Accelerated Solvent Extractor. The extracts are then purified using alumina/silica gel chromatography columns. Further purification of the eluant is achieved using a gel permeation column coupled to a high performance liquid chromatograph. The volume of the resultant eluant is then reduced and analyzed for aromatic and chlorinated hydrocarbons and polybrominated flame retardants by gas chromatography.

9.2.2 Major and trace elements
Kimbrough and Lauenstein (2006) describe the analytical methods used to determine major and trace elements in mussel tissue. In summary, sample preparation to allow the accurate and precise determination of major and trace elements in mussel tissue emphasizes homogenization and total digestion steps that minimize contamination. Analysis methods utilized include inductively coupled plasma - mass spectrometry, inductively coupled plasma - optical emission spectrometry, hydride generation - atomic fluorescence spectrometry, and cold vapor - atomic absorption spectrometry (Kimbrough and Lauenstein 2006). The atomic spectroscopy techniques include a full suite of quality assurance and quality control samples, with an emphasis on certified reference materials, in order to produce reliable data. These methods allow measurement of both background and elevated concentrations in mussel tissue samples.

9.2.3 Gonadal index and histopathology

Kim et al. (2006) describe the histological techniques used for assessment of gonadal index and histopathology in MW. In summary, determination of reproductive stage for mussels is based on a histological evaluation of the maturation stages of the gonads, most of which are located in the mantle (Kim et al. 2006). The histological approach uses a semi-quantitative numerical assignment to rank the reproductive stage of five (5) specimens chosen from each site. The mussels are first preserved whole, in shell their shells, for one week. After fixation the anterior-posterior length of each mussel is measured using a ruler, then the soft tissue is carefully removed from the shell and a 5-mm thick, dorsal-ventral cross-section slice is taken. Tissue slices are embedded in paraffin, sectioned, and stained using a pentachrome staining protocol. Stained sections are examined under a compound microscope, and sex and the state of gonadal development is determined.

9.2.4 Lab(s) accredited for method(s)

The MW program contracts with B&B Laboratories, an affiliate of TDI-Brooks International, located in College Station, Texas, for analyzing organic compounds and major and trace elements in mussel tissue. A list of B&B Laboratories’ Standard Operating Procedures (SOP’s) can be found at http://www.tdi-bi.com/analytical_services/sop_main.html. Rutgers’ Haskin Shellfish Research Laboratory, located in Port Norris, NJ, assesses gonadal index and histopathology of mussels for MW. Although these laboratories are not accredited, they have a long history of participation in NOAA’s Mussel Watch program. In addition, TDI-Brooks International, with assistance from the National Institute of Standards and Technology (NIST), has conducted yearly intercalibration studies to ensure data are accurate and precise (Kimbrough et al. 2008). Below is an excerpt from the TDI-Brooks website:

“In support of marine monitoring measurement programs, the National Institute of Standards and Technology (NIST), in cooperation with the NOAA National Status and Trends Program (NS&T), and the EPA Environmental Monitoring and Assessment Program (EMAP), has conducted yearly interlaboratory comparison exercises to provide one mechanism for participating laboratories (and monitoring programs) to evaluate their quality and comparability of performance in measuring selected organic contaminates in environmental samples.”
10.0 Quality Control (QC) Procedures

Field instruments will be checked and calibrated at the beginning of the field season, prior to use, to ensure accuracy and to minimize bias before measurements are recorded at any site. Instrument check and calibration procedures for the refractometer (salinity) and thermometer (temperature) are listed in Appendices E and F, respectively. In addition, field salinity and temperature measurements will be assessed at every station (replicate sampling location); thus three (3) replicate measurements of each parameter will be made for every Mussel Watch site (see Mussel Watch Program Data Sheets in Appendix B).

Although the MW program asks for GPS coordinates to the nearest 0.000001 decimal degrees (0.111 m/0.364 ft), the hand-held GPS units (Garmin, GPSmap 76C, and GPSmap 176) available to PSAMP staff report coordinates to the nearest 0.00001 decimal degrees (1.11 m/3.64 ft). However, the GPS coordinates for each station (replicate) represent the central point of a collection area; mussels are collected from a number of rocks/boulders/etc. around the station center (see Section 8.1 Field measurement and sample collection SOP). In addition, stations (replicates) are to be located a distance of 25 – 250 meters (82 – 820 feet) from one another, whenever possible. Given these parameters, we assert that a GPS accuracy of 0.00001 decimal degrees (1.11 m/3.64 ft) will provide adequate representation of the physical location of collected mussels.

Backup GPS units (same make and model) will be available in the field should the unit currently in use fail. Additional calibrated and checked refractometers and thermometers will also be available for backup in case one of those instruments fails or is broken in the field.

This project is limited to field work only. Once the mussels have been collected and shipped to the NOAA-contracted laboratories they will no longer be under PSAMP control. At that point the NOAA Mussel Watch program and its contracted labs will have control of the samples and responsibility for quality control (QC) procedures. The MW program data quality objectives, required lab QC samples and data QA processes are all described in NOAA documents available on the internet. See Section 9.0 for links.

11.0 Data Management Procedures

Field data and observations will be recorded on Mussel Watch Program Data Sheets (Appendix B), which will be printed on waterproof paper. A new data sheet will be completed at every site, including those that are rejected. Original copies of these data sheets will be kept by PSAMP staff in Washington, PDF copies will be sent to MW headquarters staff, and paper copies will be sent to the participating laboratories with mussel shipments. Digital photos taken at each MW site will be stored in PSAMP staff data files dedicated to Washington State MW data.

When WDFW receives the final, verified and validated data from NOAA, the PM will coordinate with Ecology staff to ensure they will be entered into EIM.

11.1 Data recording/reporting requirements

Once the mussels have been collected, they will be shipped to NOAA-contracted laboratories. The NOAA Mussel Watch program and its contracted labs will then have control of the samples and

11.2 Data upload procedures

Although the MW program has guaranteed that the final data generated by this effort will be made available to EPA’s STORET database, the timing of submission of samples for chemical analysis will be subject to availability of NOAA funds, and maximum turnaround time for chemical analysis of data generated from these samples will be approximately one year from time of submission. NOAA will notify WDFW and WDFW will notify Ecology when the 2011-2012 Mussel Watch results become available in STORET.

12.0 Audits and Reports

Ecology’s NEP QA Coordinator may conduct a field audit of sampling operations. If this is done, a water-proof field audit form will be completed, discussed with the field lead, and filed with other project documents.

Upon project completion, WDFW (Jennifer Lanksbury) will prepare a brief summary report, which shall include, at a minimum: a description of the work completed, the status and completion date for the project activities, and future recommendations. The report will summarize the basic project accomplishments and identify key lessons related to planning, design, execution and evaluation. This report will be distributed to the people listed on the Distribution List of this QAPP (see pages 3-4).

13.0 Data Verification

Measurements recorded in field logs will be reviewed by the Project Manager. The PM will determine if instruments were properly calibrated, if field measurements meet the MQOs for precision and bias.

This project is limited to field work only. Once the mussels have been collected and shipped to the NOAA-contracted laboratories they will no longer be under PSAMP control. At that point the NOAA Mussel Watch program and its contracted labs will have control of the samples and responsibility for any laboratory data verification.

14.0 Data Quality (Usability) Assessment

The verified field data will be reviewed and assessed for completeness, indications of non-representative sampling, and comparability. Findings will determine if project objectives have been met.

This project is limited to field work only. Once the mussels have been collected and shipped to the NOAA-contracted laboratories they will no longer be under PSAMP control. At that point the NOAA Mussel Watch program and its contracted labs will have control of the samples and responsibility for any data quality (usability) assessment.
15.0 References

http://www2.coastalscience.noaa.gov/publications/detail.aspx?resource=N+s+tQyTv4sTZR7ii2Srmw==

Strouse, G., D. Cross, W. Miller and D. Ripple. 2010. User-Friendly Guidance on the Replacement of

16.0 Figures

Figure 1. *Mytilus galloprovincialis/trossulus* (top) and *M. californianus* (bottom). Photo courtesy of National Mussel Watch Program unpublished report.

Figure 2. Map of MW sites to be sampled in Washington State during the 2011-12 field season. See Tables 2 or 4 for site code names.

Figure 3. Example of possible distribution of Stations (i.e. replicate sample locations) near a MW site center.

Figure 4. Example of linear distribution of Stations (replicate sample locations) along the shoreline near MW site center.

Figure 5. Diagram illustrating the height of collection vs. highest distribution of mussels.

Figure 6. Instructions and photographs describing proper packaging and mailing labels for MW shipments to laboratories.

17.0 Tables

Table 1. Projected budget for 2011/12 Mussel Watch sampling.

Table 2. Mussel Watch (MW) site sampling schedule for 2011-12 field season. Standard MW protocol indicates that sites should be sampled within a three week window on either side of the target collection date. See Figure 2 map.

Table 3. Measurement quality objectives (MQOs) for NOAA’s Mussel Watch Program.

Table 4. Location of Mussel Watch site centers (GPS datum set to NAD 1983). Samples are collected on a biennial basis (once every two years in the winter months). See Figure 2 map.
• 18.0 Appendices

• Appendix A. Mussel Sampling Equipment/Supply List

Due to the timing of low tides during the winter season, mussel sampling in the nearshore intertidal zone occurs at night. Sampling Supply List for ONE SITE:

Site Access Materials
• Directions to Site Center and Contacts list
• GPS unit
• Flashlights and/or headlamps
• Propane lantern(s), propane, and matches (useful, but optional)
• Cell phone(s)

Mussel Sampling Materials
• 1 to 3 plastic containers or buckets (for washing mussels)
• 1 to 3 small coolers/ buckets with ice (to carry mussels while sampling)
• 3 scrub brushes
• 3 knives (or more, depending on number of samplers)
• Small/medium/large disposable laboratory gloves (Nitrile or latex)
• Glove liners or knit gloves (worn under laboratory gloves to keep hands warm)

Mussel Bagging Materials – note all samples are DOUBLE-BAGGED (for shipping)
• 7 – gallon-sized Ziploc bags:
• 3 – quart-sized Ziploc bags:
• 6 bag labels (1 for each chemistry and histology bag)
• 1 garbage bag

Water Quality Measurement Devices
• Refractometer + small amount of distilled water
• Thermometer

Documentation and Recording Materials
• Digital camera
• Clipboard
• Sharpies
Appendix B. Sample Data Sheet

MUSSEL WATCH PROGRAM DATA SHEET
(WASHINGTON STATE)

<table>
<thead>
<tr>
<th>Site:</th>
<th>Site Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time Arrive:</th>
<th>Time Leave:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latitude:</th>
<th>Longitude:</th>
<th>Accuracy (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weather:

<table>
<thead>
<tr>
<th>Mussel Collectors:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Recorder:</th>
<th>GPS Make/Model</th>
<th>Datum NAD83:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SITE WATER PARAMETERS

<table>
<thead>
<tr>
<th>Tidal Station:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time of Low Tide:</th>
<th>Height of Low Tide (MLLW):</th>
<th>ft</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATION DESCRIPTIONS

STATION 1

<table>
<thead>
<tr>
<th>Latitude:</th>
<th>Longitude:</th>
<th>Accuracy (ft):</th>
<th>Start</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Temp. (°C):</th>
<th>Salinity (ppt):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrate:</th>
<th>Height of Collection:</th>
<th>ft</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Highest Distribution of Mussels (compared to water level at time of collection):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

STATION 2

<table>
<thead>
<tr>
<th>Latitude:</th>
<th>Longitude:</th>
<th>Accuracy (ft):</th>
<th>Start</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Temp. (°C):</th>
<th>Salinity (ppt):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrate:</th>
<th>Height of Collection:</th>
<th>ft</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Highest Distribution of Mussels (compared to water level at time of collection):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

STATION 3

<table>
<thead>
<tr>
<th>Latitude:</th>
<th>Longitude:</th>
<th>Accuracy (ft):</th>
<th>Start</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Temp. (°C):</th>
<th>Salinity (ppt):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrate:</th>
<th>Height of Collection:</th>
<th>ft</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Highest Distribution of Mussels (compared to water level at time of collection):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc):

<table>
<thead>
<tr>
<th>Observations and General Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observations and General Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Sample Bag Labels

Date: ___________ ___________
Station #: ___________

Date: ___________ ___________
Station #: ___________

NS&T Mussel Watch Site
Washington State
HISTOPATHOLOGY

Date: ___________ ___________
Station #: ___________

Date: ___________ ___________
Station #: ___________

NS&T Mussel Watch Site
Washington State
CHEMISTRY

Date: ___________ ___________
Station #: ___________

Date: ___________ ___________
Station #: ___________

NS&T Mussel Watch Site
Washington State
HISTOPATHOLOGY

Date: ___________ ___________
Station #: ___________

Date: ___________ ___________
Station #: ___________

NS&T Mussel Watch Site
Washington State
CHEMISTRY
Appendix D. Sample Chain of Custody Form

Mussel Watch Chemistry Sample Collections

CHAIN OF CUSTODY RECORD

<table>
<thead>
<tr>
<th>Program:</th>
<th>NS&T Mussel Watch</th>
</tr>
</thead>
<tbody>
<tr>
<td>State:</td>
<td>Washington State</td>
</tr>
<tr>
<td>Lab Contact:</td>
<td>Amanda Brewster, B & B Laboratories (979) 693-3446</td>
</tr>
<tr>
<td>Sampler Signature:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Date</th>
<th>Sample Time</th>
<th>Sample Matrix</th>
<th>Preservative</th>
<th>Containers Type</th>
<th>No.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tissue</td>
<td>Ice</td>
<td>Bag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tissue</td>
<td>Ice</td>
<td>Bag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tissue</td>
<td>Ice</td>
<td>Bag</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total # of Containers

<table>
<thead>
<tr>
<th>Relinquished By</th>
<th>Group Name</th>
<th>Date</th>
<th>Time</th>
<th>Received By</th>
<th>Company Name</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed Name:</td>
<td>Signature:</td>
<td></td>
<td></td>
<td>Printed Name:</td>
<td>Signature:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printed Name:</td>
<td>Signature:</td>
<td></td>
<td></td>
<td>Printed Name:</td>
<td>Signature:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric:</th>
<th>Sample Container:</th>
<th>Voluntary</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=Tissue</td>
<td>Q=Gas</td>
<td>S=Sediment</td>
</tr>
<tr>
<td>S=Sediment</td>
<td>W=Waste</td>
<td>R=Rinse</td>
</tr>
<tr>
<td>R=Rinse</td>
<td>H=Hazardous Waste</td>
<td></td>
</tr>
<tr>
<td>P=Product</td>
<td>V=Water</td>
<td>B=Bag</td>
</tr>
<tr>
<td>V=Water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix E. Using and calibrating a salinity refractometer

Model used in this study is ZGRS-10ATC, manufactured by Sino Science & Technology Co., Ltd.

Refractometer Parts

How to measure salinity with the refractometer; paraphrased from manufacturer’s operation manual:

1. Verify that the refractometer has been calibrated by testing to see if distilled water reads as zero (0) - see calibration instructions below.

2. Open the cover plate, use a clean dropper from the case to place several drops of seawater* on the clean prism surface; gently close the cover plate and press lightly so seawater spreads across the entire surface of the prism without air bubbles or dry spots.
 - Obtain seawater from the middle of water column (not at the surface), in as deep water as your boots allow you to wade (i.e. 1 – 2 feet of water).

3. Allow the seawater to remain on the prism for approximately 30 seconds, keeping the refractometer level so as not to drain the seawater away.

4. Turn on the light switch to illuminate the prism and look into the eyepiece. Note on the right side of the scale where the white and blue boundary lies - this value is the SALINITY (‰, permille, ppt [parts per thousand], grams salt/kilogram solution).
 - Focus using the focus adjustment, just in front of the eyepiece.
5. After measurement, clean away the seawater on the surface of the prism and cover plate using a cloth or paper towel. Put it back into its container after it is dry and store in safe location.

How to calibrate the refractometer; paraphrased from manufacturer’s operation manual:

1. Place distilled water in a sealed in a seawater bath to bring to approximately the same temperature as the seawater you will be measuring. This should take about 3-5 minutes.

2. Removed the distilled water vial from seawater bath and wipe outside of vial dry, so as not to contaminate with seawater.

3. Open refractometer cover plate, use dropper from case to place several drops of the distilled water onto the clean prism surface; gently close the cover plate and press lightly so water spreads across the entire surface of the prism without air bubbles or dry spots.

4. Allow the distilled water to remain on the prism for approximately 30 seconds, keeping the refractometer level so as not to drain the water away.

5. Turn on light switch to illuminate the prism; look into refractometer and find where the white and blue boundary lies (see illustration above).
 - Focus the scale using the focus adjustment near the eyepiece.

6. Use the small screwdriver in the refractometer case to adjust the *calibration screw under the prism* until the white and blue boundary is just on the zero (0) mark on the right side.

7. After calibration, clean away the distilled water on the surface of the prism and cover plate using a cloth or paper towel. You are now ready to take a salinity reading of seawater...see directions above.
Appendix F. Thermometer Accuracy Check: Ice Point Method

Method taken directly from Strouse et al. (2010):

“When ice and water are packed together into an insulated container, the mixture has a temperature of nearly 0 °C (32 °F). We call this mixture of ice and water the ice melting point.

The important steps in preparing an ice point are:
1. Use water that is distilled, de-ionized, or purified by reverse osmosis for both the water and the ice.
2. Be sure that the ice pieces are no bigger than a gumdrop - about 1 cm or 0.5 in.
3. Pack the insulated flask so that there is an ice-water mixture from top to bottom.
4. When inserting the thermometer, make sure that it is clean, that it is immersed at least 10 cm to 15 cm (approximately 4 in. to 6 in.) (if possible), and that the probe tip is at least 2 cm (approximately 1 inch) from the flask walls and about 5 cm (approximately 2 in.) from the bottom of the flask.

The test thermometer should read 0 °C (32 °F). Any difference from these values is the measured error.”
Appendix F. **Mussel Watch Analyte List.**

Major and trace elements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Element</th>
<th>Symbol</th>
<th>Element</th>
<th>Symbol</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminum</td>
<td>Si</td>
<td>Silicon</td>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
<td>Fe</td>
<td>Iron</td>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
<td>Zn</td>
<td>Zinc</td>
<td>As</td>
<td>Arsenic</td>
</tr>
<tr>
<td>Se</td>
<td>Selenium</td>
<td>Sn</td>
<td>Tin</td>
<td>Sb</td>
<td>Antimony</td>
</tr>
<tr>
<td>Ag</td>
<td>Silver</td>
<td>Cd</td>
<td>Cadmium</td>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>Tl</td>
<td>Thallium</td>
<td>Pb</td>
<td>Lead</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polycyclic aromatic hydrocarbons

<table>
<thead>
<tr>
<th>Analytes</th>
<th>CAS Numbers*</th>
<th>Analytes</th>
<th>CAS Numbers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>Fluoranthene</td>
<td>206-44-0</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208-96-8</td>
<td>Fluorene</td>
<td>86-73-7</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-12-7</td>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>193-39-5</td>
</tr>
<tr>
<td>Benz[a]anthracene</td>
<td>56-55-3</td>
<td>1-Methylnaphthalene</td>
<td>90-12-0</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>50-32-8</td>
<td>2-Methylnaphthalene</td>
<td>91-57-6</td>
</tr>
<tr>
<td>Benzo[e]pyrene</td>
<td>192-97-2</td>
<td>1-Methylphenanthrene</td>
<td>832-69-9</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>205-99-2</td>
<td>Naphthalene</td>
<td>91-20-3</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>207-08-9</td>
<td>Perylene</td>
<td>198-55-0</td>
</tr>
<tr>
<td>Benzo[ghi]perylene</td>
<td>191-24-2</td>
<td>Phenanthrene</td>
<td>85-01-8</td>
</tr>
<tr>
<td>Biphenyl</td>
<td>92-52-4</td>
<td>Pyrene</td>
<td>129-00-0</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
<td>1,6,7-Trimethylnaphthalene</td>
<td>2245-38-7</td>
</tr>
<tr>
<td>Dibenz[a,h]anthracene</td>
<td>53-70-3</td>
<td>2,6-Dimethylnaphthalene</td>
<td>581-42-0</td>
</tr>
</tbody>
</table>

*Chemical Abstracts Service Registry Numbers

Chlorinated pesticides determined

<table>
<thead>
<tr>
<th>Analytes</th>
<th>CAS Numbers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>309-00-2</td>
</tr>
<tr>
<td>cis-Chlordane</td>
<td>5103-71-9</td>
</tr>
<tr>
<td>2,4'-DDD</td>
<td>53-19-0</td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>72-54-8</td>
</tr>
<tr>
<td>2,4'-DDE</td>
<td>3424-82-6</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>72-55-9</td>
</tr>
<tr>
<td>2,4'-DDT</td>
<td>58633-27-5</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>50-29-3</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60-57-1</td>
</tr>
<tr>
<td>Endrin</td>
<td>72-20-8</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76-44-8</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024-57-4</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118-74-1</td>
</tr>
<tr>
<td>Gamma-HCH</td>
<td>58-89-9</td>
</tr>
<tr>
<td>Mirex</td>
<td>2385-85-5</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765-80-5</td>
</tr>
</tbody>
</table>
Polychlorinated biphenyls

<table>
<thead>
<tr>
<th>Individual congeners</th>
<th>IUPAC Numbers</th>
<th>CAS registry numbers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4'-Dichlorobiphenyl</td>
<td>8</td>
<td>34883-43-7</td>
</tr>
<tr>
<td>2,2',5-Trichlorobiphenyl</td>
<td>18</td>
<td>37680-65-2</td>
</tr>
<tr>
<td>2,4,4'-Trichlorobiphenyl</td>
<td>28</td>
<td>7012-37-5</td>
</tr>
<tr>
<td>2,2',3,5'-Tetrachlorobiphenyl</td>
<td>44</td>
<td>41464-39-5</td>
</tr>
<tr>
<td>2,2',5,5'-Tetrachlorobiphenyl</td>
<td>52</td>
<td>35693-99-3</td>
</tr>
<tr>
<td>2,3',4,4'-Tetrachlorobiphenyl</td>
<td>66</td>
<td>32598-10-0</td>
</tr>
<tr>
<td>3,3',4,4'-Tetrachlorobiphenyl</td>
<td>77(110*)</td>
<td>32598-13-3 (38380-03-9)</td>
</tr>
<tr>
<td>2,2',4,5,5'-Pentachlorobiphenyl</td>
<td>101</td>
<td>37680-73-2</td>
</tr>
<tr>
<td>2,3',3',4,4'-Pentachlorobiphenyl</td>
<td>105</td>
<td>32598-14-4</td>
</tr>
<tr>
<td>2,3',4,4',5-Pentachlorobiphenyl</td>
<td>118</td>
<td>31508-00-6</td>
</tr>
<tr>
<td>3,3',4,4',5-Pentachlorobiphenyl</td>
<td>126</td>
<td>57465-28-8</td>
</tr>
<tr>
<td>2,2',3,3',4,4'-Hexachlorobiphenyl</td>
<td>128</td>
<td>38380-07-3</td>
</tr>
<tr>
<td>2,2',3,4,4',5'-Hexachlorobiphenyl</td>
<td>138</td>
<td>35065-28-2</td>
</tr>
<tr>
<td>2,2',4,4',5,5'-Hexachlorobiphenyl</td>
<td>153</td>
<td>35065-27-1</td>
</tr>
<tr>
<td>2,2',3,3',4,4',5-Heptachlorobiphenyl</td>
<td>170</td>
<td>35065-30-6</td>
</tr>
<tr>
<td>2,2',3,4,4',5,5'-Heptachlorobiphenyl</td>
<td>180</td>
<td>36065-29-3</td>
</tr>
<tr>
<td>2,2',3,4,5,5',6-Heptachlorobiphenyl</td>
<td>187</td>
<td>52663-68-0</td>
</tr>
<tr>
<td>2,2',3,3',4,4',5,6-Octachlorobiphenyl</td>
<td>195</td>
<td>52663-78-2</td>
</tr>
<tr>
<td>2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl</td>
<td>206</td>
<td>40186-72-9</td>
</tr>
<tr>
<td>2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl</td>
<td>209</td>
<td>2051-24-3</td>
</tr>
</tbody>
</table>

*Chemical Abstracts Service Registry Numbers

Organometallic compounds

<table>
<thead>
<tr>
<th>Organotins</th>
<th>CAS Numbers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monobutyltin trichloride</td>
<td>1118-46-3</td>
</tr>
<tr>
<td>Dibutyltin dichloride</td>
<td>683-18-1</td>
</tr>
<tr>
<td>Tributyltin chloride</td>
<td>1461-22-9</td>
</tr>
<tr>
<td>Tetrabutylin</td>
<td>1461-25-2</td>
</tr>
</tbody>
</table>

*Chemical Abstracts Service Registry Numbers

Substituted polycyclic aromatic hydrocarbons.

<table>
<thead>
<tr>
<th>Analytes</th>
<th>Analytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - Naphthalenes</td>
<td>C4 - Phenanthrenes + anthracene</td>
</tr>
<tr>
<td>C2 - Naphthalenes</td>
<td>Dibenzothiophene</td>
</tr>
<tr>
<td>C3 - Naphthalenes</td>
<td>C1 - Dibenzothiophenes</td>
</tr>
<tr>
<td>C4 - Naphthalenes</td>
<td>C2 - Dibenzothiophenes</td>
</tr>
<tr>
<td>C1 - Fluorenes</td>
<td>C3 - Dibenzothiophenes</td>
</tr>
<tr>
<td>C2 - Fluorenes</td>
<td>C1 - Fluoranthene + pyrenes</td>
</tr>
<tr>
<td>C3 - Fluorenes</td>
<td>C1 - Chrysenes</td>
</tr>
<tr>
<td>C1 - Phenanthrenes + anthracene</td>
<td>C2 - Chrysenes</td>
</tr>
<tr>
<td>C2 - Phenanthrenes + anthracene</td>
<td>C3 - Chrysenes</td>
</tr>
<tr>
<td>C3 - Phenanthrenes + anthracene</td>
<td>C4 - Chrysenes</td>
</tr>
</tbody>
</table>
Appendix G. Glossary, Acronyms and Abbreviations, Units

Glossary

Accreditation - A certification process for laboratories, designed to evaluate and document a lab’s ability to perform analytical methods and produce acceptable data. For Ecology, it is “Formal recognition by (Ecology)...that an environmental laboratory is capable of producing accurate analytical data.” [WAC 173-50-040] (Kammin, 2010)

Accuracy - the degree to which a measured value agrees with the true value of the measured property. USEPA recommends that this term not be used, and that the terms precision and bias be used to convey the information associated with the term accuracy. (USGS, 1998)

Ambient: Background or away from point sources of contamination.

Analyte - An element, ion, compound, or chemical moiety (pH, alkalinity) which is to be determined. The definition can be expanded to include organisms, e.g. fecal coliform, Klebsiella, etc. (Kammin, 2010)

Bias - The difference between the population mean and the true value. Bias usually describes a systematic difference reproducible over time, and is characteristic of both the measurement system, and the analyte(s) being measured. Bias is a commonly used data quality indicator (DQI). (Kammin, 2010; Ecology, 2004)

Calibration - The process of establishing the relationship between the response of a measurement system and the concentration of the parameter being measured. (Ecology, 2004)

Chain-of-Custody Form: documentation of custody and transfer of samples. After mussel collection, this form should be filled out and signed when the mussels change hands. The original Chain-of-Custody form should be included in the cooler when the mussels are sent to the labs for processing, as the receiving labs will be the last group to sign these forms.

Comparability - The degree to which different methods, data sets and/or decisions agree or can be represented as similar; a data quality indicator. (USEPA, 1997)

Completeness - The amount of valid data obtained from a data collection project compared to the planned amount. Completeness is usually expressed as a percentage. A data quality indicator. (USEPA, 1997)

Conductivity: A measure of water’s ability to conduct an electrical current. Conductivity is related to the concentration and charge of dissolved ions in water.

Data Integrity - A qualitative DQI that evaluates the extent to which a dataset contains data that is misrepresented, falsified, or deliberately misleading. (Kammin, 2010)

Data Quality Indicators (DQI) - Data Quality Indicators (DQIs) are commonly used measures of acceptability for environmental data. The principal DQIs are precision, bias, representativeness, comparability, completeness, sensitivity, and integrity. (USEPA, 2006)

Data Quality Objectives (DQO) - Data Quality Objectives are qualitative and quantitative statements derived from systematic planning processes that clarify study objectives, define the appropriate type of data, and specify tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of data needed to support decisions. (USEPA, 2006)
Data verification - Examination of a dataset for errors or omissions, and assessment of the Data Quality Indicators related to that dataset for compliance with acceptance criteria (MQO’s). Verification is a detailed quality review of a dataset. (Ecology, 2004)

Gonadal Index: a measure of sperm and egg development. This analysis is performed to determine whether mussels were in pre- or post-spawning (reproductive) state when they were collected. This determination is essential to ensure accurate interpretation of mussel contaminant results, as mussels “dump” contaminants into their sperm and eggs and are thus expected to have lower contaminant levels after spawning.

Height of Collection - height above water level (at time of collection) where mussels are actually collected. This measurement is made at each Station (i.e. replicate location) and may vary between Stations.

Highest Distribution of Mussels - height above water level (at time of collection) of the highest distribution of mussels at each Station (i.e. replicate location). (Comparison of the above two values gives the National Mussel Watch project an estimate of where within the intertidal zone mussels were collected.)

Measurement Quality Objectives (MQOs) - Performance or acceptance criteria for individual data quality indicators, usually including precision, bias, sensitivity, completeness, comparability, and representativeness. (USEPA, 2006)

Measurement result - A value obtained by performing the procedure described in a method. (Ecology, 2004)

Parameter - A specified characteristic of a population or sample. Also, an analyte or grouping of analytes. Benzene, nitrate+nitrite, and anions are all “parameters”. (Kammin, 2010; Ecology, 2004)

Pollution: Such contamination, or other alteration of the physical, chemical, or biological properties, of any waters of the state. This includes change in temperature, taste, color, turbidity, or odor of the waters. It also includes discharge of any liquid, gaseous, solid, radioactive, or other substance into any waters of the state. This definition assumes that these changes will, or is likely to, create a nuisance or render such waters harmful, detrimental, or injurious to (1) public health, safety, or welfare, or (2) domestic, commercial, industrial, agricultural, recreational, or other legitimate beneficial uses, or (3) livestock, wild animals, birds, fish, or other aquatic life.

Population - The hypothetical set of all possible observations of the type being investigated. (Ecology, 2004)

Precision - The extent of random variability among replicate measurements of the same property; a data quality indicator. (USGS, 1998)

Quality Assurance (QA) - A set of activities designed to establish and document the reliability and usability of measurement data. (Kammin, 2010)

Quality Assurance Project Plan (QAPP) - A document that describes the objectives of a project, and the processes and activities necessary to develop data that will support those objectives. (Kammin, 2010; Ecology, 2004)

Quality Control (QC) - The routine application of measurement and statistical procedures to assess the accuracy of measurement data. (Ecology, 2004)

Refractometer – an instrument used to measure the concentration or refractive index of liquids. It measures how much the speed of light is reduced when it passes through a liquid (in this case, seawater) and projects the
result onto a salinity scale set to read in parts per thousand (ppt). (Seawater typically measures around 35 ppt, which is roughly equivalent to 35 pounds of salt per 1,000 pounds of seawater.)

Replicate samples - two or more samples taken from the environment at the same time and place, using the same protocols. Replicates are used to estimate the random variability of the material sampled. (USGS, 1998)

Representativeness - The degree to which a sample reflects the population from which it is taken; a data quality indicator. (USGS, 1998)

Sample (field) – A portion of a population (environmental entity) that is measured and assumed to represent the entire population. (USGS, 1998)

Sensitivity - In general, denotes the rate at which the analytical response (e.g., absorbance, volume, meter reading) varies with the concentration of the parameter being determined. In a specialized sense, it has the same meaning as the detection limit. (Ecology, 2004)

Site Center - the designated site location around which sampling will occur.

Standard Operating Procedure (SOP) – a document which describes in detail a reproducible and repeatable organized activity. (Kammin, 2010)

Station – replicate locations where mussels are collected at each site. Mussels are collected at three (3) stations (replicates) near the site center. Stations will be spaced between 25 - 250 meters (82 - 820 feet) apart. Mussels are collected at three separate Stations to spread out collections and avoid sampling a single, non-representative “clump” of mussels at any site.

- **Acronyms and Abbreviations**

Following are acronyms and abbreviations used frequently in this report.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COAST</td>
<td>NOAA’s Coastal Ocean Assessments, Status and Trends program</td>
</tr>
<tr>
<td>Ecology</td>
<td>Washington State Department of Ecology</td>
</tr>
<tr>
<td>EIM</td>
<td>Environmental Information Management database</td>
</tr>
<tr>
<td>ENVVEST</td>
<td>Environmental Investment program</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>et al.</td>
<td>And others</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>i.e.</td>
<td>In other words</td>
</tr>
<tr>
<td>MQO</td>
<td>Measurement quality objective</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>PBDE</td>
<td>polybrominated diphenyl ethers</td>
</tr>
<tr>
<td>PBT</td>
<td>persistent, bioaccumulative, and toxic substance</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyls</td>
</tr>
<tr>
<td>PSAMP</td>
<td>Puget Sound Assessment and Monitoring Program</td>
</tr>
<tr>
<td>QA</td>
<td>Quality assurance</td>
</tr>
<tr>
<td>SCMRC</td>
<td>Snohomish County Marine Resources Committee</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard operating procedures</td>
</tr>
<tr>
<td>STORET</td>
<td>STOrage and RETrieval; a repository for water quality, biological, and physical data managed by the EPA</td>
</tr>
<tr>
<td>WDFW</td>
<td>Washington Department of Fish and Wildlife</td>
</tr>
<tr>
<td>WSTMP</td>
<td>Washington State Toxics Monitoring Program</td>
</tr>
</tbody>
</table>
Units of Measurement

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>dw</td>
<td>dry weight</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
</tr>
<tr>
<td>km</td>
<td>kilometer, a unit of length equal to 1,000 meters.</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mi</td>
<td>mile</td>
</tr>
<tr>
<td>ppt</td>
<td>permille, parts per thousand (‰), grams salt/kilogram solution</td>
</tr>
</tbody>
</table>
5.2 WHIDBEY ISLAND, POSSESSION POINT (WIPP) DATASHEET

MUSSEL WATCH PROGRAM DATA SHEET
Washington State

Site: Whidbey Island - Possession Point
Site Code: WIPP

Date: 4-Dec-2019 Time Arrive: 1640 Time Leave: 1759

Latitude: 47.90568 Longitude: 122.37722

Weather: Clear - Partly Cloudy 12 Mps No Wind
Mussel Collectors: S. Quinnell, J. Law (Shy), J. West

Data Recorder: L. Novak
(set to Datum NAD83:)
Garmin GPSmap 76

SITE WATER PARAMETERS

Water Temperature (°C): 41° Salinity (ppt): 21

Tidal Station: Glendale, Whidbey Island
Time of Low Tides: 7:43PM
Height of Low Tide (MLLW): 0.13

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greasote</td>
<td>No obvious source of contaminants.</td>
</tr>
<tr>
<td>Oil on water</td>
<td>No</td>
</tr>
<tr>
<td>Oil on beach</td>
<td>No</td>
</tr>
<tr>
<td>Garbage</td>
<td>No</td>
</tr>
<tr>
<td>Pristine-lookng beach</td>
<td></td>
</tr>
</tbody>
</table>

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc):

Lots of barnacles, one aperatus on beach rocks & sand
Bottom of hill bluff - above us at all stations
Exposed beach at southern tip of Whidbey Island

Mussels were black phenotype - black shells on top
Collected both types.
Musel Watch Program Data Sheet

Site: Sinclair Inlet, Waterman Point
Site Code: SIWP

Date: 5-Dec-2011
Time Arrive: 7:15 am
Time Leave: 8:49 am

Latitude: 47.58497
Longitude: -122.57029

Weather: clear/pt. cloudy

Mussel Collector: Bob Johnston, Eric Nolte

Data Recorder: Sondra Cota

GPS Make/Model: Garmin GPS Map 66

Site Water Parameters

- **Water Temperature (°C):** 9°
- **Salinity (ppt):** 30

Tidal Station: Brinnon, Sinclair Inlet, Port Orchard

Time of Low Tide: 6:15 pm
Height of Low Tide (MLLW): 0.34 ft. [] m. [x]

Station Descriptions

Station 1

- **Latitude:** 47.58497
- **Longitude:** -122.57029
- **Start Time:** 7:05 am

Station Description: 90 ft S. of channel marker #4. Sample around large boulder. Collected 200/chem, 2011/10/30

Substrate: shell hash, bedrock boulder
Height of Collection: 5 ft. [] m. [x]

Highest Distribution of MusseLS (compared to water level at time of collection): []

Station 2

- **Latitude:** 47.58497
- **Longitude:** -122.57029
- **Start Time:** 7:15 am

Station Description: 90 ft S. of Station 1, sampled around large boulder 5x5 ft. Collected 150/chem

Substrate: shell hash, bedrock boulder
Height of Collection: 5 ft. [] m. [x]

Highest Distribution of MusseLS (compared to water level at time of collection): []

Station 3

- **Latitude:** 47.58497
- **Longitude:** -122.57029
- **Start Time:** 8:21 am

Station Description: 190 ft S. of Station 1, sampled around bedrock 150/chem

Substrate: shell hash, bedrock boulder
Height of Collection: 5 ft. [] m. [x]

Highest Distribution of MusseLS (compared to water level at time of collection): []

Check Boxes for Site Conditions:

- [x] Creosote
- [] Oil on water
- [] Oil on beach
- [x] Garbage
- [x] Ferry
- [x] Beach
- [x] Marine debris alarm

Observations and General Notes (i.e., interesting or unusual conditions, information, comments, etc.):

Also helped Bob Johnston collect mussels at Ross Point for his program’s monitoring. (EAWC) of Sinclair of Dye tidal. Program is part of US Navy. Good large mussels available at Ross Point Park, on boulders and in sediment between cobble.
5.4 Commencement Bay, Tahlequah Point (CBTP) Datassheet

Mussel Watch Program Data Sheet (Washington State)

<table>
<thead>
<tr>
<th>Site: Commencement Bay, Tahlequah Point</th>
<th>Site Code: CBTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 6-Dec-2011</td>
<td></td>
</tr>
<tr>
<td>Time Arrive: 19:25</td>
<td>Time Leave: 20:34</td>
</tr>
<tr>
<td>Latitude: 47°38'10"N</td>
<td>Longitude: 122°50'49"W</td>
</tr>
<tr>
<td>Weather: overcast, ~40°F/30°F</td>
<td></td>
</tr>
<tr>
<td>Mussel Collectors: Orlinaida, Larksbury, Niewolny</td>
<td></td>
</tr>
<tr>
<td>Data Recorder: Orlinaida</td>
<td>GPS Make/Model: Mariner (set to Datum NAD83): Map76C</td>
</tr>
</tbody>
</table>

Site Water Parameters

- Water Temperature (°C): 9°C/48°F
- Salinity (ppt): 33

Tidal Station
- Tahlequah, Neil Pt., Daku Passage, Vashon Is.

Time of Low Tide: 8:35pm

Height of Low Tide (MLLW): 0.09 ft.

Site Descriptions

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Start Time</th>
<th>Station Description</th>
<th>Substrate</th>
<th>Height of Collection</th>
<th>Highest Distribution of Mussels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47°36'12"N</td>
<td>122°50'48"W</td>
<td>19:32</td>
<td>Directly under old light house, infringe of derelict creosote pilings</td>
<td>150 m, 25 bales</td>
<td>8 ft. 0 m.</td>
<td>X</td>
<td>(Compared to water level at time of collection)</td>
</tr>
<tr>
<td>2</td>
<td>47°33'05"N</td>
<td>122°54'56"W</td>
<td>19:50</td>
<td>Directly s of Station 1, 30-40 ft away, much debris, closer to waterline here</td>
<td>Small boulders, cable</td>
<td>2 ft. 0 m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>47°33'55"N</td>
<td>122°55'31"W</td>
<td>20:15</td>
<td>Halfway between ferry terminal & old lighthouse</td>
<td>Large line of boulders</td>
<td>10 ft. 0 m.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check Boxes for Site Conditions:

- **Creosote**: Creosote retaining walls on many houses along beach & creosote pilings at old light house.
- **Oil on water**: Pasted.
- **Garbage**: Rusty pipe on beach & old metal screen for refrigerator, ferry terminal nearby with concrete dock, lots of drain holes (for runoff?) along retaining walls too.

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):
MUSSEL WATCH PROGRAM DATA SHEET
(WASHINGTON STATE)

Site: Elliott Bay, Four-Mile Rock
Site Code: EBFR

Date: 6-Dec-2011
Time Arrive: 6:47 PM
Time Leave: 9:49 PM

Latitude: 47° 14' 36.68"
Longitude: 122° 41' 28.0"
Weather: Cloudy
Temperature: 43°F
Humidity: 6°C

Mussel Collector: Jonica Mathison, Marc Greenberg, Bob Brenner
Data Recorder: Jonica

GPS Make/Model: Garmin GPS 376s

SITE WATER PARAMETERS

Water Temperature (°C): 41°F
Salinity (ppt): 27
Tidal Station: Meadow Park/Shilshole Marina

Time of Low Tide: 8:30pm
Height of Low Tide (MLLW): 0.09 ft

STATION DESCRIPTIONS

STATION 1

Latitude: 47° 14' 36.68"
Longitude: 122° 41' 28.0"
Start Time: 7:06

Station Description: Seaward side of 4 mile rock
Substrate: Large rock, cobble, sand
Height of Collection: 5-6 ft
Highest Distribution of Mussels: (compared to water level at time of collection) 4 ft

STATION 2

Latitude: 47° 14' 36.68"
Longitude: 122° 41' 28.0"
Start Time: 8:06

Station Description: 114' down land side of 4 mile rock - no pipes extending out towards water. About 10' SE of pipe, running water from pipe to beach
Substrate: Near tide, sandy/mud/cobble
Height of Collection: 4-5 ft
Highest Distribution of Mussels: (compared to water level at time of collection) 4 ft

STATION 3

Latitude: 47° 14' 36.68"
Longitude: 122° 41' 28.0"
Start Time: 8:56

Station Description: The cape SE of 4 mile rock extending onto cobbles and sand
Substrate: Near tide, sandy/mud/cobble
Height of Collection: 5 ft
Highest Distribution of Mussels: (compared to water level at time of collection) 5 ft

Check Boxes for Site Conditions:

- **Condition:** Creosote
- **Description:** Saw one pipe draining runoff on to beach, but hard water running + seeping on to beach near station 3 as well

- **Condition:** Oil on water
- **Description:**

- **Condition:** Oil on beach
- **Description:**

- **Condition:** Garbage
- **Description:**

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

- **Observations:**
 - Cloudy but no rain
 - Saw one pipe draining runoff on to beach, but hard water running + seeping on to beach near station 3 as well

- **Remarks:**
 - Couldn't get the light to work on the refractometer even after changing the battery. Used a flashlight to get salinity reading + to calibrate before hand.
5.6 South Puget Sound, Budd Inlet (SSBI) Datasheet

Mussel Watch Program Data Sheet
(Washington State)

Site: South Sound, Budd Inlet
Site Code: SSBI
Date: 12-20-2011
Time Arrive: 13:39
Time Leave: 14:57
Latitude: 47°55.59'N
Longitude: 122°53.65'W
Accuracy: 4'
Weather: Clear, sunny night
Mussel Collectors: J. Lanksbury, S. Quinnell, S. Orlandi, L. Niewoehner, T. Gries
Data Recorder: S. Orlandi
GPS Make/Model: Garmin Map 176

<table>
<thead>
<tr>
<th>SITE WATER PARAMETERS</th>
</tr>
</thead>
</table>
| **Tidal Station:** Olympia, Budd Inlet
Time of Low Tide: 8:15pm
Height of Low Tide (MLLW): -0.18 ft. X |

<table>
<thead>
<tr>
<th>STATION DESCRIPTIONS</th>
</tr>
</thead>
</table>
| **Station 1**
Latitude: 47°55.82'N
Longitude: 122°53.65'W
Accuracy: 4'
Start Time: 13:39
Water Temp. (°C): 9.0
Salinity (ppt): 31
Station Description: Southernmost point of MLM compound. Right in front of water testing well/plan bar fence, n~25 for hinds, n~107 for clams
Substrate: Budde/Gravel/cobble
Height of Collection: 5 ft. X m.
Highest Distribution of Mussels (compared to water level at time of collection): 6 |

| **Station 2**
Latitude: 47°49.99'N
Longitude: 122°54.66'W
Accuracy: 4'
Start Time: 19:17
Water Temp. (°C): 9.0
Salinity (ppt): 32
Station Description: Northernmost point of MLM compound. In front of water testing well/plan bar fence, n~25 for hinds, n~98 for clams
Substrate: Budde/Gravel/cobble
Height of Collection: 5 ft. X m.
Highest Distribution of Mussels (compared to water level at time of collection): 6 |

| **Station 3**
Latitude: 47°10.00'N
Longitude: 122°54.58'W
Accuracy: 11'
Start Time: 19:36
Water Temp. (°C): 8.5
Salinity (ppt): 39
Station Description: Below hairline bluff
Height of Collection: 5 ft. X m.
Highest Distribution of Mussels (compared to water level at time of collection): 6 |

Check Boxes for Site Conditions:
- Creosote: old leek over creosote boards
- Oil on water
- Oil on beach
- Garbage
- Other: Metal pipe that makes out to water, could see spray and possible oils
- Outflow: some sort of outflow spigot from site center in front of chain link fence

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):
-large concrete discs, 2-3 ft. diameter
5.7 Puget Sound, Edmonds Ferry (PSEF) Datasheet

MUSSEL WATCH PROGRAM DATA SHEET
WASHINGTON STATE

- **Site:** Edmonds Ferry
- **Site Code:** PSEF

<table>
<thead>
<tr>
<th>Date:</th>
<th>1-30-22</th>
<th>Time Arrive:</th>
<th>2:00</th>
<th>Time Leave:</th>
<th>3:45</th>
</tr>
</thead>
</table>

- **Latitude:** 47°48'50.4"N
- **Longitude:** 122°29'9.4"W
- **Accuracy (m):** 11'

- **Weather:** Windy

- **Mussel Collector:** Nancy ([Name Redacted])

- **GPS Make/Model:** Garmin eTrex 30X

SITE WATER PARAMETERS

- **Tidal Station:** Seattle
- **Height of Low Tidal (MLLW):** 2.4' ft [X] m []

STATION DESCRIPTIONS

STATION 1

- **Latitude:** 47°48'50.4"N
- **Longitude:** 122°29'9.4"W
- **Accuracy (m):** 11'
- **Start Time:** 2:30

- **Water Temp. (°C):** 8°C
- **Salinity (ppt):** 31.1%

- **Station Description:** Jetty - near jhono, north side

- **Substrate:** Rip rap

- **Height of Collection:** 0.5 ft [X] m []

- **Highest Distribution of Mussels:** Compared to water level at time of collection:

STATION 2

- **Latitude:** 47°48'50.4"N
- **Longitude:** 122°29'9.4"W
- **Accuracy (m):** 11'
- **Start Time:** 3:30

- **Water Temp. (°C):** 8°C
- **Salinity (ppt):** 31.1%

- **Station Description:** Jetty - north side between 143

- **Substrate:** Rip rap

- **Height of Collection:** 0.5 ft [X] m []

- **Highest Distribution of Mussels:** Compared to water level at time of collection:

STATION 3

- **Latitude:** 47°48'50.4"N
- **Longitude:** 122°29'9.4"W
- **Accuracy (m):** 11'
- **Start Time:** 3:30

- **Water Temp. (°C):** 8°C
- **Salinity (ppt):** 31.1%

- **Station Description:** Jetty - outer end, north side

- **Substrate:** Rip rap

- **Height of Collection:** 0.5 ft [X] m []

- **Highest Distribution of Mussels:** Compared to water level at time of collection:

Checkboxes for Site Conditions:

- **Condition:** Creosote []
- **Condition:** Oil on water []
- **Condition:** Oil on beach []
- **Condition:** Garbage []
- **Condition:** Other: Dead Seal [X]

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc):

- Fewer mussels further out on the dock
- Jetty (Station 3)
5.8 Puget Sound, Everett CEMEX (PSEC) Datasheet

Mussel Watch Program Data Sheet (Washington State)

- **Site:** Puget Sound Everett CEMEX
- **Site Code:** PSEC
- **Date:** 1/89/12
- **Time Arrive:** 3:16p
- **Time Leave:** 4:09p
- **Latitude:** N48°01'07" "
- **Longitude:** W122°28'51"
- **Accuracy:** ±10
- **Weather:** Overcast, some wind
- **Mussel Collectors:** Mary Cunningham, Tad Schenkel, Brian Walsh, Emily Willett
- **Data Recorder:** Emily Willett
- **GPS Make/Model:** Garmin 685tmap 60Xs

Site Water Parameters

- **Tidal Station:** Everett
- **Time of Low Tide:** 4:10 PM
- **Height of Low Tides (MLLW):** +2.36 ft

Station Descriptions

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy</th>
<th>Start Time</th>
<th>Water Temp. (°C)</th>
<th>Salinity (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station 1</td>
<td>N48°01'07"</td>
<td>W122°28'51"</td>
<td>±10</td>
<td>3:25</td>
<td>5.0°C</td>
<td>4 ppt</td>
</tr>
<tr>
<td>Station 2</td>
<td>N48°01'07"</td>
<td>W122°28'51"</td>
<td>±10</td>
<td>3:25</td>
<td>5.0°C</td>
<td>2 ppt</td>
</tr>
<tr>
<td>Station 3</td>
<td>N48°01'07"</td>
<td>W122°28'51"</td>
<td>±10</td>
<td>3:25</td>
<td>5.0°C</td>
<td>2 ppt</td>
</tr>
</tbody>
</table>

Observations and General Notes

- **Condition:** Crescote
- **Condition:** Oil on water
- **Condition:** Oil on beach
- **Condition:** Garbage
- **Condition:** Other

- **Turbid Water**

Observations and General Notes:

- The measured salinity has quite low - possibly due to low tide.
- The measured salinity has quite low - possibly due to low tide.
- The measured salinity has quite low - possibly due to low tide.
- The measured salinity has quite low - possibly due to low tide.
- The measured salinity has quite low - possibly due to low tide.

Stations:

- Station 1: Ne of point (25°) to south of anchor
- Station 2: N of point (25°) to south of anchor
- Station 3: Site Center (NE corner)

Outfall:

- North end

Site Center:

- Station 1

5.9 Puget Sound, Kayak Point (PSKP) Datasheet

Site: Kayak Point
Site Code: PSKP

Date: 1-30-12
Time Arrive: 2:15
Time Leave: 5:15 PM

Latitude: 47°10'12.1" N
Longitude: 122°31'35.8" W
Accuracy: 14'

Weather: 12°C

Mussel Collectors: Kathleen, Francisco, Cathy, Stanley

Data Recorder: Kathleen, Francisco (Datum NAD83 E631456 N634056)

Site Water Parameters

Tidal Station: Kayak Point
Time of Low Tide: 8:10 PM
Height of Low Tide (MLLW): 2.3 ft

Station Descriptions

Station 1

Lat/Lon: 47°10'12.1", 122°31'35.8"
Accuracy: 14'
Start Time: 2:55 PM

Water Temp (°C): 6.5
Salinity (ppt): 11

Station Description: Lots of large mussels on this side

Substrate: 50% cobble, 200 cm. sand and surf
Height of collection: 2.3 ft
Highest Distribution of Mussels (compared to water level at time of collection): 3

Station 2

Lat/Lon: 47°10'12.1", 122°31'35.8"
Accuracy: 14'
Start Time: 2:25 PM

Water Temp (°C): 6.5
Salinity (ppt): 11

Station Description: 80% cobble, 150 cm. sand and surf
Site Status: protected, 45 who has been here, broken shell (broken

Substrate: 50% cobble, 200 cm. sand and surf
Height of collection: 1.35 ft
Highest Distribution of Mussels (compared to water level at time of collection): 9 ft

Station 3

Lat/Lon: 47°10'12.1", 122°31'35.8"
Accuracy: 14'
Start Time: 2:05

Water Temp (°C): 6.5
Salinity (ppt): 11

Station Description: 50% cobble, 150 cm. sand

Substrate: 50% cobble, 200 cm. sand
Height of collection: 3.5 ft

Highest Distribution of Mussels (compared to water level at time of collection): 2 ft

Observations and General Notes:

- Lots of large mussels in the water
- Used original site code as Alan found
- Had set - more mussels as you head south

[Diagram of Kayak Point with annotations]
Site Information

Site: Puget Sound, Everett Harbor (PSEH)
Site Code: PSEH

Date: 1/31/12
Time Arrive: 3:45
Time Leave: 5:25

Latitude: N47°47.04′
Longitude: W122°22.83′
Accuracy (m): 1.0

Weather: Overcast

Mussel Collectors: Mary Cunningham, Chris Petechuk, Emily Whitney

Data Recorder: Emily Whitney
GPS Maker/Model: Esriion GISMap 400x

Site Water Parameters

Tidal Station: Everett

Time of Low Tide: 5:11 pm
Height of Low Tide (MLW): +1.93 ft

Station Descriptions

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy (m)</th>
<th>Water Temp. (°C)</th>
<th>Salinity (ppt)</th>
<th>Station Description</th>
<th>Sample Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION 1</td>
<td>N47°47.04′</td>
<td>W122°22.83′</td>
<td>1.0</td>
<td>6.8°C</td>
<td>22</td>
<td>Greatest water near dock 2</td>
<td>Samples collected from large pile of debris near dock 2, muddy area, no shells. Highest Distribution of Mussels (compared to water level at time of collection): 4 ft</td>
</tr>
</tbody>
</table>
| STATION 2 | N47°47.04′ | W122°22.83′ | 1.0 | 11°C | 23 | Site center, at point | Substrate: Rip-rap
Height of Collection: 3 ft | Highest Distribution of Mussels (compared to water level at time of collection): 6 ft |
| STATION 3 | N47°47.04′ | W122°22.83′ | 1.0 | 10.5°C | 23 | North of site center, below Gate 5-1 building | Mussel very abundant
Height of Collection: 2 ft | Highest Distribution of Mussels (compared to water level at time of collection): 6 ft |

Check Boxes for Site Conditions

- Condition: Creosote
- Oil on water
- Oil on beach
- Garbage
- Other: Tangled wires, missing

Observations and General Notes

- Mussels abundant, especially at station 1 when larger mussels were present.
- Saw the City of Everett's 900 repairing for derelicts near Begin Creek 10% of site). There was a 50,000 gal discharge in mid-October at a larger event, around Thanksgiving 2011. Contact Mary Cunningham.
Site Information

Site: Puget Sound, Hermosa Point (PSHP)

Site Code: PSHP

Date: 1-3-12 **Time Arrive:** 3:12pm **Time Leave:** 5:00pm

Latitude: 48°03'46"N **Longitude:** 122°11'54.5"W **Accuracy (m):** 5

Weather: Light rain showers

Mussel Collector: Carl Streake

Data Recorder: Lincoln Lyle

Tidal Station: Seattle

Time of Low Tide: 5:00pm

Height of Low Tides (MLLW): 198 ft

Site Water Parameters

- **Water Temp. (°C):** 7
- **Salinity (ppt):** 13

Station Descriptions

Station 1

- **Latitude:** 48°03'46"N **Longitude:** 122°11'54.5"W **Accuracy (m):** 5
- **Water Temp. (°C):** 7 **Salinity (ppt):** 13
- **Station Description:** At the point

 Substrate: Cobbles
 Height of Collection: 1 ft, 3 m
 Highest Distribution of Mussels: At water level at time of collection

Station 2

- **Latitude:** 48°03'46"N **Longitude:** 122°11'54.5"W **Accuracy (m):** 5
- **Water Temp. (°C):** 7 **Salinity (ppt):** 13
- **Station Description:** Cobbles midway between +1 and -1

 Substrate: Cobbles
 Height of Collection: 2 ft, 6 m
 Highest Distribution of Mussels: At water level at time of collection

Station 3

- **Latitude:** 48°03'46"N **Longitude:** 122°11'54.5"W **Accuracy (m):** 5
- **Water Temp. (°C):** 7 **Salinity (ppt):** 13
- **Station Description:** Rock

 Substrate: Rock
 Height of Collection: 3 ft, 4 m
 Highest Distribution of Mussels: At water level at time of collection

Observations and General Notes

- **Condition:**
 - Creosote
 - Oil on water
 - Oil on beach
 - Garbage
 - Other

Version 4 – 2009
5.12 Puget Sound, Hat Island (PSHI) Datasheet

Mussel Watch Program Data Sheet
(Washington State)

<table>
<thead>
<tr>
<th>Site:</th>
<th>Puget Sound Hat Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Code:</td>
<td>PSI1</td>
</tr>
</tbody>
</table>

Date: 4/18/2006
Time Arrive: 14:06
Time Leave: 15:28
Latitude: N47°08.049'
Longitude: W122°48.534'
Accuracy: 27'
Weather: 40° Cloudy
Mussel Collector: Kathleen Humann
Data Recorder: Kathleen Humann
GPS Make/Model: Canon Map 4003x

Site Water Parameters

Tidal Station: Everett
Time of Low Tide: 5:11 pm
Height of Low Tide (MLLW): 1.98 ft, 0.6 m

Station Descriptions

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Water Temp. (°C)</th>
<th>Salinity (ppt)</th>
<th>Collection Site</th>
<th>Substrate</th>
<th>Height of Collection</th>
<th>Station Description</th>
<th>Highest Distribution of Mussels</th>
<th>Date of Collection</th>
<th>Substrate</th>
<th>Height of Collection</th>
<th>Station Description</th>
<th>Highest Distribution of Mussels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>50.5</td>
<td></td>
<td>West side of bunker</td>
<td>concrete bunker</td>
<td>5 ft x 8 m</td>
<td>Outside of bunker on northwest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>-5.0</td>
<td></td>
<td>Outside of bunker</td>
<td>concrete bunker</td>
<td>5 ft x 8 m</td>
<td>North side of bunker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>70.5</td>
<td></td>
<td>East side of bunker</td>
<td>concrete bunker</td>
<td>5 ft x 8 m</td>
<td>Above water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations and General Notes:

Jim: High tide, sandy.
Scott: Very high tide, big waves, conditions difficult.
Bill: Beach difficult.

Bill Dawson

Station 2

Station 3

Due to difficult conditions, just took GPS @ Site center.

Mussels on the small side, but adequate.
MUSSEL WATCH PROGRAM DATA SHEET
(WASHINGTON STATE)

Site: Elliott Bay, Duwamish Head
Site Code: EBDH

Date: 01-03-2012
Time Arrive: 16:00
Time Leave: 17:00

Latitude: 47.59543
Longitude: 122.38760
Accuracy (ft): 15 ft

Weather: Overcast, Light rain

Mussel Collector: J. Lankebury, Jancis Mathison, "Noelle Congdon" (Seattle Aquarium volunteers)
Data Recorder: Noelle Congdon
GPS Make/Model:
Datum NAD83:

SITE WATER PARAMETERS

Tidal Station: Seattle (Madison St), Elliott Bay – Station ID: 1071
Time of Low Tide: 7:09pm
Height of Low Tide (MLLW): -0.39 ft.

STATION DESCRIPTIONS

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy (ft)</th>
<th>Start Time</th>
<th>Water Temp (°C)</th>
<th>Salinity (ppt)</th>
<th>Station Description</th>
<th>Substrate</th>
<th>Height of Collection</th>
<th>Highest Distribution of Mussels (compared to water level at time of collection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.59580</td>
<td>122.38760</td>
<td>15 ft</td>
<td>16:10</td>
<td>9°C</td>
<td>2.6 ppt</td>
<td>Under pier, boulder, riprap on sand (174 = chum, 20 = Histo)</td>
<td>riprap boulders</td>
<td>1ft</td>
<td>3.6 ft</td>
</tr>
<tr>
<td>2</td>
<td>47.59481</td>
<td>122.38731</td>
<td>28 ft</td>
<td>16:32</td>
<td>9°C</td>
<td>2.8 ppt</td>
<td>Open riprap boulders, sand/rocks, gravel (177 = chum, 20 = Histo)</td>
<td>riprap boulders</td>
<td>1ft</td>
<td>4.4 ft</td>
</tr>
<tr>
<td>3</td>
<td>47.59487</td>
<td>122.38837</td>
<td>14 ft</td>
<td>16:56</td>
<td>9°C</td>
<td>3.0 ppt</td>
<td>Riprap on sand (166 = chum, 2.5 = Histo)</td>
<td>riprap boulders</td>
<td>1ft</td>
<td>3.6 ft</td>
</tr>
</tbody>
</table>

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc):

- Alki Beach (Harbor Ave SW) runs along beach (above).

- Large "drain pipe" was station 3 on concrete retaining wall. Had air coming out of them—probably hotel or apartment building air conditioning vents, but not sure.
5.14 Puget Sound, Port Townsend (PSPT) Datasheet

Mussel Watch Program Data Sheet
(Washington State)

Site: Puget Sound, Port Townsend
Site Code: PSPT

Date: 01-08-2012
Time Arrive: 18:55
Time Leave: 20:12

Latitude: 48.10454
Longitude: 122.77795
Accuracy (t): 118th

Weather: Cloudy (partly), Full moon, no rain

Mussel Collectors: J. Lankbury, W. Walet, L. Dawson, L. Dawson, J. Trombly, A. Thrull

Data Recorder: Eliza Dawson

GPS Make/Model: (Datum NAD83): GPSmap 76c

Site Water Parameters

Tidal Station: Port Townsend, Station ID: 1016
Time of Low Tide: 9:25pm
Height of Low Tide (MLLW): -0.42 ft.
X

Station Descriptions

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48.10499</td>
<td>122.77814</td>
<td>118th</td>
<td>18:55</td>
</tr>
<tr>
<td></td>
<td>Water Temp. (°C): 7°C</td>
<td>Salinity (ppt): 34°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Description:</td>
<td>(measured near site center) west of jetty about 1/4 way on average covering mussel of 3 station</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate:</td>
<td>beach and cobbles with shell hash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Distribution of Mussels (compared to water level at time of collection):</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>48.10579</td>
<td>122.77887</td>
<td>118th</td>
<td>19:20</td>
</tr>
<tr>
<td></td>
<td>Water Temp. (°C): 7°C</td>
<td>Salinity (ppt): 36°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Description:</td>
<td>Close to shore line, no sand, shell hash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate:</td>
<td>same as station 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Distribution of Mussels (compared to water level at time of collection):</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>48.10598</td>
<td>122.77954</td>
<td>118th</td>
<td>19:53</td>
</tr>
<tr>
<td></td>
<td>Water Temp. (°C): 7°C</td>
<td>Salinity (ppt): 35°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Description:</td>
<td>Close to shoreline near base of jetty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate:</td>
<td>same as station 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Distribution of Mussels (compared to water level at time of collection):</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

- None noted in water at temp/sal in station 2.
- Sanctuary growing between temp/sal in station 2 and 3.
- 3 replicate readings for temp + salinity taken at low bounty line (not at same locations as station 1, 2, 3 where mussel were collected since those location ran perpendicular to the water line along a jetty wall.)
MUSSEL WATCH PROGRAM DATA SHEET (WASHINGTON STATE)

Site: Puget Sound, Hood Canal Site Code: PSHC
Date: 01/05/2012 Time Arrive: 18:33 Time Leave: 19:09
Latitude: 47.83252 Longitude: 122.68741 Accuracy (ft): 19.97
Rain
Mussel Collectors: J. Lanksbury, S. Ortman, Colin Meenk, J. Wallac
Data Recorder: Colin Meenk GPS Make/Model (Datum NAD83): Garmin 60C

SITE WATER PARAMETERS
Tidal Station: Lofall, Station ID: 1033
Time of Low Tide: 10:52pm Height of Low Tide (MILLW): -0.61 ft: m:

STATION DESCRIPTIONS

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy (ft)</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.83252</td>
<td>122.68741</td>
<td>19.97</td>
<td>18:33</td>
</tr>
<tr>
<td>Water Temp. (°C):</td>
<td>8.2 °C</td>
<td>Salinity (ppt): 32 ppt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Description:</td>
<td>Next to the edge of a dock.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate:</td>
<td>Large boulders and breakwater</td>
<td>Height of Collection: 1 ft, 0 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Distribution of Mussels (compared to water level at time of collection): 2.6 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy (ft)</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>47.83239</td>
<td>122.68723</td>
<td>22.47</td>
<td>18:45</td>
</tr>
<tr>
<td>Water Temp. (°C):</td>
<td>8.9 °C</td>
<td>Salinity (ppt): 32 ppt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Description:</td>
<td>About 50 ft from Station 1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate:</td>
<td>Sand and vegetation</td>
<td>Height of Collection: 2.3 ft, 0 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Distribution of Mussels (compared to water level at time of collection): 3.0 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy (ft)</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>47.83263</td>
<td>122.68703</td>
<td>22.47</td>
<td>18:57</td>
</tr>
<tr>
<td>Water Temp. (°C):</td>
<td>8.5 °C</td>
<td>Salinity (ppt): 32 ppt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Description:</td>
<td>North of old mason ferry loading.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate:</td>
<td>Sand and mud</td>
<td>Height of Collection: 1 ft, 0 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Distribution of Mussels (compared to water level at time of collection): 4.0 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check Boxes for Site Conditions:

- [] Creosote "Entire dock constructed of this"
- [] Oil on water
- [] Oil on beach
- [] Garbage "Plastic bag on beach in upper intertidal sand"
- [] Other

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

Old Dept. of Transportation site. Derelict dock and landing for small ferries still on site - all made of creosote.

House just to the south of site with beach front retaining wall of concrete.
5.16 Puget Sound, Port Angeles (PSPA) Datasheet

MUSSEL WATCH PROGRAM DATA SHEET
(WASHINGTON STATE)

Site: Puget Sound, Port Angeles
Site Code: PSPA

Date: 01-18-2012
Time Arrive: 12:45
Time Leave: 13:38

Latitude: 48.138794
Longitude: 123.420062
Accuracy (m): NA

Weather: Cloudy, light wind

Mussel Collectors: Randy Hodgin (manager American Gold/Fish Seafoods salmon net pens)

Data Recorder: J Lankshury
GPS Make/Model: GPSmap 76C

SITE WATER PARAMETERS

- **Tidal Station:** NA: sampled using SCUBA, tide height irrelevant
- **Time of Low Tide:**
- **Height of Low Tide (MLLW):** ft. [] m. []

STATION DESCRIPTIONS

Station 1

<table>
<thead>
<tr>
<th>Approx. Latitude</th>
<th>Approx. Longitude</th>
<th>Accuracy (m)</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.138031</td>
<td>123.421212</td>
<td>NA</td>
<td>10:00</td>
</tr>
</tbody>
</table>

Water Temp. (°C): 7.5
Salinity (ppt): 33

Station Description: Temp/Salinity taken off boat launch pier (48.140794, 123.42635) ± 44. Mussel taken off south end of main salmon pen system - see map.

Substrate: Plastic Floats
Height of Collection: ft. [] m. []

Highest Distribution of Mussels (compared to water level at time of collection):

Station 2

<table>
<thead>
<tr>
<th>Approx. Latitude</th>
<th>Approx. Longitude</th>
<th>Accuracy (m)</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.157826</td>
<td>123.417806</td>
<td>NA</td>
<td>10:00</td>
</tr>
</tbody>
</table>

Water Temp. (°C): 9.0
Salinity (ppt): 33

Station Description: Temp/Salinity off boat launch pier (48.140794, 123.42635) ± 44. Mussell taken from single C-pen system - part of Station 1 (map)

Substrate: Plastic Floats
Height of Collection: ft. [] m. []

Highest Distribution of Mussels (compared to water level at time of collection):

Station 3

<table>
<thead>
<tr>
<th>Approx. Latitude</th>
<th>Approx. Longitude</th>
<th>Accuracy (m)</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.134810</td>
<td>123.421328</td>
<td>NA</td>
<td>10:00</td>
</tr>
</tbody>
</table>

Water Temp. (°C): 7.0
Salinity (ppt): 34

Station Description: Temp/Salinity off boat launch pier (48.140794, 123.42635) ± 44. Mussel taken off north end of main salmon pen system - see map

Substrate: Plastic Floats
Height of Collection: ft. [] m. []

Highest Distribution of Mussels (compared to water level at time of collection):

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

- **Observations:**
 - Many crocked logs within 2 mile of net pens
 - Boats launched into site
 - Large vessels docked there.

- **Comments:**
 - Drawings collected around noon by Randy Hodgin - he had them in 3 epilimic clips when I arrived on site in his fish refrigerator. He provided a hand-drawn map of his sampling locations (attached). See description in front of datasheet.

- **Additional Notes:**
 - **Temp/Salinity data taken off nearby boat launch (1/2 mile from net pens).**
 - **Drawings** - used for net pen and collection (Station 3)
MUSSEL WATCH PROGRAM DATA SHEET

Site: South Sound, Kopachuck Park
Site Code: SSKP

<table>
<thead>
<tr>
<th>Data</th>
<th>Time Arrive</th>
<th>Time Leave</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy (ft)</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Jan-2012</td>
<td>8:30 AM</td>
<td>2:45 PM</td>
<td>47.3101</td>
<td>122.68779</td>
<td>13 ft</td>
<td>Mostly cloudy, light wind of 4 1/2 ft/s</td>
</tr>
</tbody>
</table>

Mussel Collectors: J. Lankbury, S. Ornaita
Data Recorder: GPS Map/Model (Datum NAD83): GPSmap76c

SITE WATER PARAMETERS

<table>
<thead>
<tr>
<th>Time of Low Tide</th>
<th>Height of Low Tide (MLLW)</th>
<th>ft</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:03 pm</td>
<td>+0.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy (ft)</th>
<th>Start Time</th>
<th>Water Temp. (°C)</th>
<th>Salinity (ppt)</th>
<th>Station Description</th>
<th>Substrate</th>
<th>Highest Distribution of Mussels (compared to water level at time of collection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION 1</td>
<td>47.3101</td>
<td>122.68779</td>
<td>32</td>
<td>1:45 pm</td>
<td>7.5°C</td>
<td>30.0</td>
<td>Gravel & sand beach with very large Pacific sanddollies</td>
<td>Lying perpendicularly to beach, with upper beaches submerged in water</td>
<td>8 ft x 1 ft</td>
</tr>
<tr>
<td>STATION 2</td>
<td>47.3085</td>
<td>122.68902</td>
<td>40</td>
<td>2:04 pm</td>
<td>7.5°C</td>
<td>30.0</td>
<td>Sand & sand beach with downed evergreen trees</td>
<td>Lying perpendicularly to beach, whole trees and roots submerged in water</td>
<td>3 ft x 2 ft</td>
</tr>
<tr>
<td>STATION 3</td>
<td>47.3085</td>
<td>122.68902</td>
<td>25</td>
<td>2:26 pm</td>
<td>7.5°C</td>
<td>30.0</td>
<td>Pebble & sand beach with some boulders, downed trees</td>
<td>Lying perpendicularly to beach, higher in intertidal zone than station 1</td>
<td>4 ft x 1 ft</td>
</tr>
</tbody>
</table>

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

- Garbage: black plastic windrower
- Vegetation: Coming from outhouse?
- Rocks: along each side of beach

Check Boxes for Site Conditions:

- [] Creosote
- [] Oil on water
- [] Oil on beach
- [] Garbage: black plastic windrower
- [] Other
- [] Vegetation: Coming from outhouse?
- [] Rocks: along each side of beach

Version 4 – 2009
MUSSEL WATCH PROGRAM DATA SHEET (WASHINGTON STATE)

Site: Bellingham Bay, Squalicum Marina
Site Code: BBSM

Date: 06/18/2012
Time Arrive: 06:20
Time Leave: 08:20

Latitude: 48.73812
Longitude: 122.47385
Accuracy: 10'

Weather: Cold, clear skies no rain in last 48 hours, glossy water.

Mussel Collectors: Melissa Derby Cambie, Jackson Barnes, Jackie Ford

Data Recorder: Melissa Derby Cambie

SITE WATER PARAMETERS

- **Tidal Station:** Bellingham Bay, Bellingham
- **Time of Low Tide:** 6:18pm
- **Height of Low Tide (MLLW):** 0.04 ft.

STATION DESCRIPTIONS

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Accuracy</th>
<th>Start Time</th>
<th>Water Temp. (°C)</th>
<th>Salinity (ppt)</th>
<th>Substrate</th>
<th>Height of Collection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48.73812</td>
<td>122.47385</td>
<td>10'</td>
<td>19:11</td>
<td>6.0</td>
<td>10.0</td>
<td>Large boulders</td>
<td>8.3</td>
<td>10 m</td>
</tr>
<tr>
<td>2</td>
<td>48.73810</td>
<td>122.44844</td>
<td>25'</td>
<td>19:53</td>
<td>5.0</td>
<td>10.0</td>
<td>Same as station 1</td>
<td>10.0</td>
<td>10 m</td>
</tr>
<tr>
<td>3</td>
<td>48.73825</td>
<td>122.49892</td>
<td>22'</td>
<td>20:31</td>
<td>6.0</td>
<td>10.0</td>
<td>Same as station 1</td>
<td>10.0</td>
<td>10 m</td>
</tr>
</tbody>
</table>

Highest Distribution of Mussels (compared to water level at time of collection):
- Station 1: 10 m
- Station 2: 10 m
- Station 3: 10 m

Check Boxes for Site Conditions:
- **Creosote:** 1 creosote piling in 30' offshore in front of station 3
- **Oil on water:**
- **Oil on beach:**
- **Garbage:** Some flotsam wedged in boulders—not a lot
- **Other:** Substantial amount of steel cable/wire in lower intertidal zone

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):
This is a hard location to sample. The rocks are large, and can be slippery. Volunteers should be
comfortable scrambling while carrying supplies. It was
fin if you like scrambling. We were not able to
find the historic naval center. We decided to
make our center what visually appeared to be
the middle of the jetty inward
side. The pockets of mussels are few and far
between, and most of small mussels. There are
many large boulders and a few lingal.
SITE WATER PARAMETERS

Tidal Station: Strait of Georgia, Blaine, Semiahmoo Bay

<table>
<thead>
<tr>
<th>Time of Low Tide</th>
<th>Height of Low Tide (MLLW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:15pm</td>
<td>-0.10 ft.</td>
</tr>
</tbody>
</table>

STATION DESCRIPTIONS

STATION 1

- **Latitude:** 48.98306
- **Longitude:** 122.08553
- **Accuracy:** 5 ft
- **Start Time:** 19:45

Station Description: Large boulder on small pebbled beach in intertidal

Substrate: Boulder

Height of Collection:

<table>
<thead>
<tr>
<th>ft</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Highest Distribution of Mussels (compared to water level at time of collection):

- **Substrate:** Boulder

STATION 2

Latitude:

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Accuracy (ft)</th>
<th>Start Time</th>
</tr>
</thead>
</table>

Water Temp. (°C): 5.0

Salinity (ppt): available

Station Description: see notes

Substrate: Boulder

Height of Collection:

<table>
<thead>
<tr>
<th>ft</th>
<th>m</th>
</tr>
</thead>
</table>

Highest Distribution of Mussels (compared to water level at time of collection):

STATION 3

Latitude:

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Accuracy (ft)</th>
<th>Start Time</th>
</tr>
</thead>
</table>

Water Temp. (°C):

<table>
<thead>
<tr>
<th>Salinity (ppt):</th>
<th>available</th>
</tr>
</thead>
</table>

Station Description: see notes

Substrate: Boulder

Height of Collection:

<table>
<thead>
<tr>
<th>ft</th>
<th>m</th>
</tr>
</thead>
</table>

Highest Distribution of Mussels (compared to water level at time of collection):

Check Boxes for Site Conditions:

- **Creeks:**
- **Oil on water:**
- **Oil on beach:**
- **Garbage:** metal/ceramic roller-looking part (car part?)
- **Other:** buoys on beach (4fed)
- **Notes:** cement/brick wall piece

Notes:

- Haines above beach on bluff overlooking shore.

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

Very few mussels on boulders and mostly very small (less than 1/4 inch).

Only able to collect from 1 station.

Mostly sea stars on lower intertidal boulders - high predation?

- **Haines**
Mussel Watch Program Data Sheet

Site: Willapa Bay, Nahcotta
Site Code: WBNA

- **Date:** 6-Feb-2012
- **Time Arrive:** 4:10 pm
- **Time Leave:** 5:55 pm
- **Latitude:** 46.94919
- **Longitude:** 124.02804
- **Accuracy:** 9

Weather: Sunny, clear, windy, 75°F

Mussel Collectors: J. Lankesbury, S. Orinalta

Data Recorder: S0
GPS Make/Model: GPSMAP 76C

Site Water Parameters

- **Tidal Station:** Nahcotta, Willapa Bay
- **Time of Low Tide:** 6:45pm
- **Height of Low Tide (MLLW):** -0.20 ft.
- **Condition:** Sunny, clear, windy
- **Water Temp. (°C):** 7°C
- **Salinity (ppt):** 22

Station Descriptions

Station 1

- **Latitude:** 46.94931
- **Longitude:** 124.02682
- **Accuracy:** 18
- **Start Time:** 4:20 pm

Station Description:
- Oyster rack on rebar
- Next to riprap wall
- Large riprap boulders on mud/nut
- oyster rack on mud/nut-to-jetty
- Mud of gravel

- **Substrate:** Mud of gravel
- **Height of Collection:** 20 ft.
- **Highest Distribution of Mussels:** 20 ft.

Station 2

- **Latitude:** 46.94919
- **Longitude:** 124.02724
- **Accuracy:** 9
- **Start Time:** 5:06 pm

Station Description:
- 2 wooden oyster racks
- 3500 ft.
- from Station 1
- 152 Chem.
- 80-180 lb.

- **Substrate:** Mud of gravel
- **Height of Collection:** 20 ft.
- **Highest Distribution of Mussels:** 20 ft.

Station 3

- **Latitude:** 46.94925
- **Longitude:** 124.02805
- **Accuracy:** 6
- **Start Time:** 5:38 pm

Station Description:
- 2 wooden oyster racks
- 3500 ft.
- from Station 1
- 152 Chem.
- 80-180 lb.

- **Substrate:** Mud of gravel
- **Height of Collection:** 20 ft.
- **Highest Distribution of Mussels:** 20 ft.

Observations and General Notes

- **Creosote:** creosote legs on jetty
- **Oil on water:**
- **Oil on beach:**
- **Garbage:**
- **Other:** gravel on jetty & on mud below intertidal

Rebar in water for oyster racks

Notes:
- Mussels sparse among many large oyster

Feel light & shells are thin fragile, easy to break.

Station 3 had very few mussels available, tried for fewer from that location for chemistry.
MUSSEL WATCH PROGRAM DATA SHEET
(WASHINGTON STATE)

Site: Elliott Bay, Myrtle Edwards

Site Code: EBME

Date: 13-Feb-2012
Time Arrive: 1:45 PM
Time Leave: 2:45 PM

Latitude: 47.62594
Longitude: 122.37315
Accuracy: 10

Weather: Cloudy, slight breeze, mild

Mussel Collectors: J. Lanksbury, S. Orl灌rea, Norelle Comandon

Data Recorder: S. Orlandina

GPS Make/Model: Garmin Etrex 76C

SITE WATER PARAMETERS

Tidal Station: Seattle (Madison St.), Elliott Bay

Time of Low Tide: 3:15 PM
Height of Low Tide (MLLW): 0.20 ft. [x]

STATION DESCRIPTIONS

Station 1

- **Latitude:** 47.62592
- **Longitude:** 122.37330
- **Accuracy:** 13
- **Start Time:** 1:50 PM

Water Temp. (°C): 8°C
Salinity (ppt): 21

Station Description: Boon on riprap wall in front of park pier

Chemistry: 135
Height: 23

Substrate: Boulder (basalt)

Highest Distribution of Mussels (compared to water level at time of collection): [x]

Station 2

- **Latitude:** 47.62592
- **Longitude:** 122.37330
- **Accuracy:** 7
- **Start Time:** 2:13 PM

Water Temp. (°C): 8°C
Salinity (ppt): 30

Station Description: Boon on riprap wall at the end of park pier

Chemistry: 133
Height: 23

Substrate: Boulder

Highest Distribution of Mussels (compared to water level at time of collection): [x]

Station 3

- **Latitude:** 47.62592
- **Longitude:** 122.37263
- **Accuracy:** 10
- **Start Time:** 2:29 PM

Water Temp. (°C): 8°C
Salinity (ppt): 30

Station Description: Boon below silos on riprap

Chemistry: 130
Height: 23

Substrate: Basalt Boulder

Highest Distribution of Mussels (compared to water level at time of collection): [x]

Check Boxes for Site Conditions:

- **Condition:** Checkmark boxes for site conditions
- **Description:** Additional notes about site conditions

- Creosote
- Oil on water
- Oil on beach
- Garbage: at the top of riprap wall
- Other: city ferry terminals/cargo ship site near-by

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

Mussels seemed more abundant and larger than in 2009/10, last time we sampled here.
5.22 Puget Sound, Cavalerio County Park (PSCC) Datasheet

Site: Cavalerio County Park Site Code: PSCC
Date: 2/24/2012 Time Arrived: 13:30 Time Leave: 14:30
Latitude: 47° 16' 36.2" Longitude: 122° 38' 43.5" Accuracy (ft): 17 (m):
Weather: Overcast, drizzle/mist from.
Mussel Collectors: Jennifer Sewigay, Judy Pope
Data Recorder: Jennifer Sewigay
GPS Make/Model: Garmin Etrex
Datum NAD33:

SITE WATER PARAMETERS
Tidal Station: Kayak Pt County Park
Time of Low Tide: 1:00 Height of Low Tide (MLLW): 0.62 ft X m.

STATION DESCRIPTIONS

| Station 1 | Latitude: 47° 16' 36.2" Longitude: 122° 38' 43.5" Accuracy (ft): 7 |
|-----------|-----------------------------|-----------------------------|
| Water Temp. (°C): 36.6°F Salinity (ppt): 80.9 ml |
| Station Description: Large Boulders on cobble substrate Height of Collection: 0.1 ft m |

<table>
<thead>
<tr>
<th>Station 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude: 47° 16' 36.2" Longitude: 122° 38' 43.5" Accuracy (ft): 7</td>
</tr>
<tr>
<td>Water Temp. (°C): 17.1°F Salinity (ppt): 30.3 ml</td>
</tr>
<tr>
<td>Station Description: Mussels on large boulder Height of Collection: 0.2 ft m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude: 47° 16' 36.2" Longitude: 122° 38' 43.5" Accuracy (ft): 7</td>
</tr>
<tr>
<td>Water Temp. (°C): 7.5°F Salinity (ppt): 20.2 ml</td>
</tr>
<tr>
<td>Station Description: Large boulders on cobble Height of Collection: 0.1 ft m</td>
</tr>
</tbody>
</table>

Check Boxes for Site Conditions:
- Creosote: Creosote logs protecting the parking lot
- Oil on water
- Oil on beach
- Garbage
- Other: Storm drain discharge empties south of Sea wall ~ 70 ft from nearest site station (41)
- Parking: N 40 ft from station 1

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

Mussel Watch Program Data Sheet

Site: South Puget Sound, Tolmie Park (SSTP)
Site Code: SSTP

<table>
<thead>
<tr>
<th>Date: 22-Feb-2012</th>
<th>Time Arrive: 11:33</th>
<th>Time Leave: 12:28</th>
</tr>
</thead>
</table>

Latitude: 47.3258
Longitude: 122.4648
Accuracy (ft):

Weather: partly cloudy, windy, sunny & light sprinkles

Mussel Collectors: J. Lankabury, S. Orfaineta, P. Jatczak
Data Recorder: S. Orfaineta
GPS Make/Model: GPS map 76C
Datum NAD83:

Site Water Parameters

Tidal Station: DuPont Wharf, Nisqually Reach
Time of Low Tide: 12:17 PM
Height of Low Tide (MLLW): 1.22 ft. m

Station Descriptions

<table>
<thead>
<tr>
<th>Station 1</th>
<th>Start: 11:17</th>
<th>End: 12:13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude:</td>
<td>47.3238</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Salinity (ppt):</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Station Description: large colonial mussel in sand, directly in front of park entrance.
Substrate: cobble & sand
Height of Collection: 1 ft. m
Highest Distribution of Mussel:

<table>
<thead>
<tr>
<th>Station 2</th>
<th>Start: 12:04</th>
<th>End: 1:01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude:</td>
<td>47.3245</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Salinity (ppt):</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Station Description: large colonial mussel on tree, likely the same tree as last time we sampled.
Substrate: mussel on tree
Height of Collection: 2 ft. m
Highest Distribution of Mussel:

<table>
<thead>
<tr>
<th>Station 3</th>
<th>Start: 12:48</th>
<th>End: 1:45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude:</td>
<td>47.3238</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Salinity (ppt):</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Station Description: large colonial mussel in sand between colony.
Substrate: cobble & sand
Height of Collection: 1 ft. m
Highest Distribution of Mussel:

Check Boxes for Site Conditions

- [x] Creosote
- [.] Oil on water
- [.] Oil on beach
- [x] Garbage
- [.] Other

Observations and General Notes:

Some mussels seem to be growing inside of...

Site Right next to Park boundary sign (North):

MUSSLE WATCH PROGRAM DATA SHEET
(WASHINGTON STATE)

Site: Juan de Fuca, Cape Flattery
Site Code: JFCF

Date: 6-Mar-2012
Time Arrive: 16:51
Time Leave: 17:30

Latitude: 48.20.262
Longitude: 124.40.974
Accuracy (ft): ±16 ft

Weather: Sunny

Mussel Collectors: J. Lankbury, J. Stiller

Data Recorder: J. Lankbury
GPS Make/Model: (Datum NAD83): GP-III Map 762

SITE WATER PARAMETERS

Tidal Station: Tatoosh Island, Cape Flattery
Time of Low Tide: 5:29pm
Height of Low Tide (MLLW): -0.02 ft

STATION DESCRIPTIONS

Station 1

- **Latitude:** 48.20.262
- **Longitude:** 124.40.974
- **Accuracy (ft):** ±6

Water Temp. (°C):
- 3.0

Salinity (ppt):
- 33

Station Description: Temperature and salinity measured in surge channel connected to ocean; high surf @ edge

Substrate: Rocked Unified Sandstone
Height of Collection: 1 ft

Highest Distribution of Mussels (compared to water level at time of collection): 3 ft

Station 2

- **Latitude:** 48.20.262
- **Longitude:** 124.40.974
- **Accuracy (ft):** ±7

Water Temp. (°C):
- 3.0

Salinity (ppt):
- 34

Station Description: Temper & salinity same as surge channel

Substrate: Sand
Height of Collection: 1 ft

Highest Distribution of Mussels (compared to water level at time of collection): 4 ft

Station 3

- **Latitude:** 48.20.262
- **Longitude:** 124.40.974
- **Accuracy (ft):** ±9

Water Temp. (°C):
- 3.0

Salinity (ppt):
- 35

Station Description: Another (different) surge channel further on beach

Height Distribution of Mussels on beach here:

Substrate: Sand
Height of Collection: 1 ft

Highest Distribution of Mussels (compared to water level at time of collection): 5 ft

Check Boxes for Site Conditions:

- [] Condition: Creosote
- [] Condition: Oil on water
- [] Condition: Oil on beach
- [] Condition: Garbage
- [] Other: Plastic garbage noted (spare) on beach

Observations and General Notes (i.e. interesting or unusual conditions, information, comments, etc.):

- Makah tribal beach accessed with permission from the tribe and through Olympic Coast National Marine Sanctuary - Makah agreement