Report on the 2008 Rockiish Survey
 off Cape Flattery, Washington

by Farron Wallace, Yuk Wing Cheng, and Tien-Shui Tsou

Washington Department of
Fish and Wildlife
Fish Program
Fish Management

State of Washington Department of Fish and Wildlife

Report No. FPT 17-04

Report on the 2008 Rockfish Survey off Cape Flattery, Washington

Farron Wallace, Yuk Wing Cheng, and Tien-Shui Tsou

August 2018

Table of Contents

List of Tables ii
List of Figures iii
Executive Summary 1
Introduction 4
Methods 6
Results 8
Discussion 10
Literature Cited 13
Tables and Figures 16

List of Tables

Table 1. Descriptive statistics for each transect. 16
Table 2. Numbers of fish observed by species or species group in each transect. 17
Table 3. Percent of total number of observations by groundfish species or species group observed in each transect 18
Table 4. Density of fish (\#'s/Ha) by species or species group observed in each transect. 19
Table 5. Number of invertebrates observed by species or species group in each transect 20
Table 6. Percent of total invertebrates observed by species or species group in each transect. 21
Table 7. Density of invertebrates observed by species or species group in each transect 22
Table 8. Percent habitat type observed in each transect. 23
Table 9. Summary of the analysis of variance results 24
Table 10. Comparison of the number of fish observed by species and the 2008 to 2009 IPHC survey
catch by station. 25

List of Figures

Figure 1. Location of the 2008 groundfish ROV survey sites 26
Figure 2. Stanford Research work class ROV and umbilical(far right) on deck of the R/V Centennial. Max SMX-1000 ROV with Mobile Inspection Package 27
Figure 3. Doppler Velocity Logger (left) and 3-beam menstruation system (right) 27
Figure 4. Mobile Inspection Package sensor suite 28
Figure 5. ROV on the deck of the R/V Centennial (left), ROV control center, data accusation and processing. 28
Figure 6. Location of IPHC Rockfish stations sampled between 2007 and 2009 off of Cape Flattery Washington 29
Figure 7. Transect locations near San Juan Islands in Puget Sound. 30
Figure 8. Transect locations (dark lines) on "The Prairie, 40 kilometers" WSW of Cape Flattery Washington 31
Figure 9. Plot of diurnal changes in Canary Rockfish densities between two ROV sub- transects (A and B) within the 24 hours. 32
Figure 10. Plot of diurnal changes in juvenile Rockfish (Little bitty guy) densities between two ROV sub- transects (A and B) within the 24 hours 32
Figure 11. Plot of diurnal changes in rosethorn Rockfish densities between two ROV sub- transects (A and B) within the 24 hours. 33
Figure 12. Plot of diurnal changes for unidentified adult Rockfish densities between two ROV sub- transects (A and B) within the 24 hours. 33
Figure 13. Plot of diurnal changes for Stripetail/Sharpchin Rockfish densities between two ROV sub- transects (A and B) within the 24 hours. 34
Figure 14. Plot of diurnal changes for dogfish shark densities between two ROV sub-transects (A and B) within the 24 hours. 34
Figure 15. Plot of diurnal changes for Sea Urchin densities between two ROV sub-transects (A and B) within the 24 hours. 35
Figure 16. Plot of diurnal changes in Sea Cucumber densities between two ROV sub- transects (A and B) within the 24 hours 35
Figure 17. Plot of diurnal changes in sea star densities between two ROV sub- transects (A and B) within the 24 hours. 36
Figure 18. Plot of diurnal changes for Yelloweye Rockfish densities between two ROV sub- transects (A and B) within the 24 hours. 36
Figure 19. Plot of diurnal changes for Tiger Rockfish densities between two ROV sub- transects (A and B) within the 24 hours. 37
Figure 20. Plot of diurnal changes for Yellowtail Rockfish densities between two ROV sub- transects (A and B) within the 24 hours. 37
Figure 21. Plot of diurnal changes for Lingcod densities between two ROV sub- transects (A and B) within the 24 hours. 38
Figure 22. Plot of diurnal changes in sculpin densities between two ROV sub- transects (A and B) within the 24 hours. 38

Figure 23. Plot of diurnal changes for unidentified flatfish densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 24. Plot of diurnal changes in feather star densities between two ROV sub- transects (A and B) within the 24 hours.39

Executive Summary

In recent years, Rockfish (Sebastes spp.) conservation has become the primary driving force behind management measures for numerous commercial and recreational groundfish fisheries. In coastal waters off California, Oregon and Washington, Canary, Yelloweye and Boccaccio Rockfish were determined to be overfished by the Pacific Fisheries Management Council (PFMC) and within Puget Sound these species have been listed as threatened or endangered by the National Marine Fisheries Service (NMFS). ${ }^{1}$ In an effort to promote research to aid in Rockfish conservation, the Washington State legislature passed House Bill 1476 in 2007. This bill, supported by the fishing Industry, created a Rockfish research account for the Washington Department of Fish and Wildlife (WDFW) with funding provided through surcharges on selected commercial and recreational fishing licenses. This funding provided an important opportunity to develop Rockfish research projects to support stock assessments that are intended to inform management and promote conservation of groundfish resources in the Puget Sound basin and off the Washington coast.

In the coastal waters, Yelloweye Rockfish was declared overfished by the NMFS in 2002 and has been one of the main species that limit fishing opportunities. Information for Yelloweye Rockfish collected from the WDFW/ International Pacific Halibut Commission (IPHC) cooperative survey has been incorporated into the PFMC’s Yelloweye Rockfish stock assessment since 2001. Unfortunately, the survey catch rate information has varied substantially among years making the population trend information difficult to interpret. In an effort to better understand the fluctuation observed in IPHC survey, WDFW conducted a video survey of IPHC Rockfish stations located off the Washington coast in 2008. The objectives of the survey were to gather data to establish habitat associations and explore catch rates of Rockfish across time and area using ROV survey technology. This information will allow us to develop a more efficient and cost effective way to survey Rockfish populations in areas not accessible to traditional survey techniques while not inducing additional mortality. A long-term no-take monitoring survey program will significantly contribute to Rockfish population status determination. These data will inform stock assessments that will in turn inform fishery managers as they develop effective management measures that provide meaningful fishing opportunity that are in line with conservation of this valuable living resource.

We observed over 2,300 fish from 36 species or species groups, fifteen of which were Rockfish. Rockfish were encountered most frequently and found in the highest density on most transects relative to other species. Among the invertebrates, such as Sea Urchins and feather stars, were encountered most frequently and had highest densities among all other invertebrates. The primary habitat found among transects was gravel with sand as secondary habitat interspersed with boulders that were found in stacked piles or scattered. Many of the Rockfish species including Yelloweye, Rosethorn, SSharpchin/SStripetail grouping, TTiger, Canary, and YYellowtail Rockfish were found largely associated with or near boulder habitat.

Our study suggested that there may be diurnal effects on the relative survey abundance for a number of Rockfish species. For Canary, unidentified juvenile Rockfish, unidentified adult and rosethorn Rockfish, we found higher survey abundance during day light hours compared with

[^0]nighttime. For Sharpchin/Stripetail Rockfish, we found highest abundance at dawn and dusk. However, due to the low number of observations for many other Rockfish or other groundfish species, it was difficult to draw a conclusion. Yelloweye Rockfish, Tiger Rockfish, Yellowtail Rockfish, Lingcod, sculpin and unidentified flatfish density was variable and without apparent diurnal pattern.

Visual survey methodology has a number of advantages and disadvantages for surveying Rockfish, which have been well chronicled in this study and elsewhere. Some of the disadvantages include: 1) difficulties in fish identification, particularly for small fish or fish with cryptic coloration, 2) the potential for attraction or repulsion from the submersible, 3) variation in detection due to habitat type; for example, due to reduced visibility when the submersible maneuvered off bottom to avoid large boulders, or the failure to detect fish hiding behind boulders, 4) possible bias in collecting length measurements and 5) the limitation of the technique to quantifying the density of benthic species found in close proximity to the bottom. The advantages of the technique include the ability to: 1) sample in habitats that are inaccessible to other survey methods, 2) observe in-situ fish behavior, 3) observe the distribution of fish and fish-habitat associations on a fine scale, and 4) survey where additional mortality is not compatible with conservation for species and/or for species poorly sampled by trawl gear, such as Yelloweye Rockfish.

Given limited funding, expense is a major consideration in developing any groundfish survey. We found that costs associated with this survey were at least five times more expensive than the traditional longline survey methods for surveying the same nine study sites. In the future, however, these costs could be substantially reduced by employing smaller vessels and crew than that used in this survey. This approach has been previously demonstrated to be effective by WDFW which recently completed several small-vessel ROV surveys near the San Juan Islands in Puget Sound. It is unclear how effective this approach would be in coastal waters given more extreme weather conditions and survey depths that are greater than 60 fathoms. If no-take surveys are required, we should consider exploring less expensive ROV survey approaches and/ or other no-take survey methods such as self-releasing pots.

Overall, it is clear that relatively large-scale no-take surveys are needed to assess bottomfish abudance/biomass in habitats that are not accessible to bottom trawl survey gear. This study has demonstrated that visual transect surveys could provide a unique no-take alternative method for estimating Rockfish absolute abundance/biomass in habitats not accessible to conventional survey tools, while setline surveys can only produce relative abundance indices. The absolute abundance/biomass estimates can be used to "ground truth" the biomass estimates in stock assessments; and abundance indices can only "guide" the abundance trends. However, further study among several study sites and habitats will be required to better inform development of survey methods and measure the degree of possible bias associated with diel movement and avoidance behavior. Additionally, research that provides insight into the seasonal and/or social behavior patterns associated with prey or mating will be necessary to fully understand or interpret abundance estimates. Because most groundfish species are habitat-specific in their distribution, careful survey design will be necessary to ensure precise and unbiased estimates of abundance. Specifically, the low density and patchy distribution of Yelloweye and many other Rockfish species must be taken into consideration for developing a meaningful index time series that will be responsive to changes in abundance and useful to population dynamics models. If direct observation surveys such as the present study were
conducted on a routine basis, a time-series of Yelloweye Rockfish density data could be used to develop an index of the trend in abundance. Such an index would be indispensable information that could be incorporated into a demographic model of the Yelloweye Rockfish population for stock assessment analysis.

Introduction

In recent years, Rockfish (Sebastes) conservation has become the primary driving force behind management measures for numerous commercial and recreational groundfish fisheries. In coastal waters off California, Oregon and Washington, Canary, Yelloweye and Bocaccio Rockfish were determined to be overfished by the Pacific Fisheries Management Council (PFMC) and within Puget Sound these species have been listed as threatened by the National Marine Fisheries Service (NMFS). ${ }^{2}$ It is clear that conservation of these stocks is critical for providing sustainable fisheries and preservation of a complex marine ecosystem. The underlying reason for these species susceptibility and declining population trend is linked to the biology of many of the species that are found in this genus. Rockfish biology is adapted for long survival, slow growth, relatively low productivity, and sporadic recruitment success making Rockfish susceptible to over-fishing (Love et al., 2002, Parker et al., 2001). Some species, such as Yelloweye Rockfish, can live to more than 140 years old. Many Rockfish species are associated with physically complex rocky habitats (e.g., ledges, crevices, boulder fields, and pinnacles), which are difficult or impossible to accurately survey using conventional methods such as bottom trawl gear (Krieger et al., 1993, O’Connell and Carlile 1993, Jagielo et al., 2002). Additionally, due to low abundance, survey methods that result in mortality are not desirable or even possible for some species and could result in further constraints on recreational and commercial fisheries. Use and development of novel no-take survey methodology will be essential to assess future recovery and stock status of these species (Wallace et al., 2006).

In an effort to promote research to support Rockfish conservation and management, the Washington State legislature passed House Bill 1476 in 2007. This bill supported by the fishing Industry, created a Rockfish research account for the Washington Department of Fish and Wildlife (WDFW) with funding provided through surcharges on selected commercial and recreational fishing licenses. The Bill directed WDFW to conduct Puget Sound basin and coastal surveys with new and existing technology to estimate the current abundance for future recovery of Rockfish populations and other groundfish species. This funding provided an important opportunity to develop Rockfish research projects to support stock assessment and management needs to promote the conservation of groundfish resources in the Puget Sound basin and off the Washington coast.

This report describes one survey that was made possible by the Rockfish research account conducted by WDFW in 2008. This survey involved using a ROV and was aimed at gathering data to establish habitat associations and explore how catch rates of Rockfish vary in key times and areas visited by an annual set-line survey conducted by the International Halibut Commission (IPHC, https://iphc.int/management/science-and-research/fishery-independent-setline-surveyfiss). The information gained was intended to support WDFW in developing a more efficient and cost effective way to survey Rockfish populations in areas not accessible to traditional survey techniques without mortality.

Surveys provide vital information for understanding stock status (i.e. current abundance relative to a benchmark such as the unfished stock size) and population size. If direct observation surveys such as the present study were conducted on a routine basis, a time-series of Yelloweye Rockfish

[^1]density data could be used to develop an index of the trend in abundance. Of note, such index surveys are intended to track the "relative" abundance of the population and not overall or "absolute" abundance. Estimates of absolute abundance would be preferable but are difficult and beyond what is possible with the resources available for conducting surveys. As long as a survey of relative abundance measures a signal that is consistently proportional to the overall size of the population each year, scientists can use the survey to estimate stock size and status in combination with other information in a stock assessment. However, it is typically unknown how well a particular survey actually does at consistently sampling the population. Changes in the index may reflect a true signal in the population or may instead simply be "noise" caused by other factors.

The WDFW/IPHC cooperative survey has been used as an index of abundance in the PFMC's Yelloweye Rockfish stock assessment since 2001 (Wallace et al., 2006 and Stewart et. al., 2009). Yelloweye catches in the survey have varied substantially among year. A species like Yelloweye is not expected to experience large swings in abundance from year to year, especially when catches have been reduced as low as they have, and so it may be that the changes in the index are noise being caused by other factors. The IPHC survey uses hook and line gear and visits the same stations each year. The 2008 ROV survey was designed to explore the survey stations and search for factors possibly influencing the variability. Fish movement and other behaviors can be critical to properly understanding how well a survey monitors a particular species. There have been several studies showing that many species of Rockfish exhibit strong diel vertical movement behaviors (Wilkins, 1986, Richards et al., 1991, Parker et al., 2007, Parker et al., 2008, Tolimieri et al., 2009). This behavior, especially if occurring nonrandomly, can strongly influence species availability to the bottom tending survey gear such as setline or video survey biasing biomass and/or density estimates.

Others have previously expressed concern that diel behavior may significantly impact precision and/or bias survey biomass estimates (Olsen, 1990; Appenzeller and Leggett, 1992; Simmonds et al., 1992, Stanely et al., 1999 and Stanely et al., 2000). Results from this study support the argument that many Rockfish species exhibit diel vertical movement patterns that could directly affect their availability to bottom-tending survey methods.

Many Rockfish are habitat-specific in their distribution, including Yelloweye. In our survey, Yelloweye Rockfish were found to be most abundant (65\%) in boulder-dominated bottom habitat. Previous surveys throughout the West Coast have noted similar associations of Yelloweye Rockfish with complex rocky habitats (Richards, 1986; Pearcy et al., 1989; Stein et al., 1992; O’Connell and Carlile, 1993; Murie et al., 1994; Yoklavich et al., 2000; Johnson et al., 2003).

Observations made by ROVs and other submersibles in British Columbia and southeastern Alaska found greatest Yelloweye densities over boulder fields and broken rock (O’Connell and Carlile, 1993; Murie et al., 1994; Johnson et al., 2003) as well as in wall habitats (Richards, 1986). The density of Yelloweye Rockfish among different habitat types may be influenced by the occurrence of refuge spaces (O’Connell and Carlile, 1993; Johnson et al., 2003), which provide protection from predators and high prey density (Murie et al., 1994). Differential fishing pressure across habitat types may also contribute to the distribution of Yelloweye and other Rockfish species (Yoklavich et al., 2000; Johnson et al., 2003). Our observations of higher Yelloweye densities over complex rocky bottoms may be due to the greater number of microhabitat refugia and increased protection from fishing pressure provided by these habitats.

Methods

In collaboration with the Stanford Research Institute (SRI) and the University of Washington, the WDFW conducted a sub-sea ROV video survey of Rockfish in waters, known to local fishermen as "The Prairie", located 30 nm WSW of Cape Flattery, Washington. In advent of stormy weather conditions, often found in off-shore coastal areas, alternative survey sites were also selected within Puget Sound near the San Juan Islands (Figure 1). The survey was carried out aboard the University of Washington's research vessel, Centennial between September 11 through September 17, 2008. The vessel served as the survey platform for ROV deployment, navigation, data processing, and crew quarters. The ROV, designed and operated by SRI personnel, was well equipped with a wide array of sonar, lasers, cameras and navigation sensors, a ring laser gyro, Echoscope MKII, DIDSON, split head Doppler Velocity Logger (DVL) and Ultra Short Base Line tracking system (USBL; Figures 2-5).

The coastal survey stations were selected from the IPHC survey sites that have been used in a collaborative IPHC/WDFW longline Rockfish survey that began in 2006. The nine IPHC survey stations selected for study are located in an area of known high Rockfish abundance surrounding IPHC station 1082 (Figure 6). This station has historically produced more than 90% of the total Yelloweye Rockfish caught in the IPHC annual longline survey off Washington. This survey followed the IPHC survey by two months and ROV transect start and stop positions matched 2008 IPHC station start and end points. In addition to the nine survey stations, a series of transects were planned over a 24 -hour period on station 1582 to evaluate the possible diurnal effect on fish densities. Each transect was further subdivided into two sub-transects and used as predictor variables for an analysis of variance (ANOVA).
Alternative survey sites within Puget Sound were chosen from a set of survey locations previously selected for a focused survey of groundfish near the San Juan Islands that took place during fall and winter months of 2008 and 2009.

Digital video files collected during the survey were post processed into digital images that could be viewed using Microsoft Windows Media Player. This software provided for on-the-fly control of image color, contrast and brightness and allowed for easy review and enhancement through and within any video segment. Observers recorded measurements of laser width and screen width, bottom type, and number of fish and invertebrate species encountered.

A strip transect was conducted at each site and area swept (m^{2}) was estimated as the product of average width swept (w), and the total transect length (l). Width swept for each transect was estimated from multiple measurements of two parallel lasers (spaced 24 inches apart) and the width of the viewable video screen. Width swept for each transect was the average of the product of 24 (inches between parallel lasers) and the ratio of the distance between lasers/total screen widths and was calculated as:
$T W=$ Average $\left(24 \frac{s}{l}\right)$
Where $\overline{T W}$ is the mean transect width, the measured video screen width is s and l is the measured distance between the parallel lasers on the video screen. The distance between the lasers is 24 inches.

A DVL navigation module was used to collected information on distance traveled in any given time interval to determine distance traveled for any given transect. The DVL is highly repeatable and its' relative accuracy is $\sim 0.2-1 \%$ (i.e. 1 km transect, 0.5% dist travel error $=5 \mathrm{~m}$ error over a 1000 m run). Transect length was simply the sum of the distance traveled in each one second interval over the length of transect. Because there is drift in DVL heading sensor, the travel path of the ROV was corrected to estimate the approximate geodetic position of transects. Geodetic positioning of transect lines was completed by shifting the DVL data to fit the mean Ultra-Shortbase (USBL) track line, which is geodetically correct but imprecise. This allowed for corrected GIS plotting of transect paths in relation to the presumed path of the IPHC set line. The geodetic repositioning of the DVL data had no bearing on the calculation of transect length only relative position.

Bottom habitat type was visually characterized throughout each video transect and whenever habitat type changed it was noted within the dataset. Habitat typing following the method of Stein et al. (1992) and using the classification criteria developed by Greene et al. (1999), combinations of microhabitat type including mud, sand, pebble, cobble, boulders, and rock ridge were categorized according to primary (at least 50% of the area viewed) and secondary (> 20\% of the area viewed). If primary habitat was determined to be "bolder", additional specification of either continuous or stack was also recorded.

Fish and invertebrates were identified and included in the survey counts only if they crossed an imaginary midline that ran between the parallel laser sport. Lighting and visibility was greatest in this zone, and we assumed that the probability of observing and counting fish/invertebrates (q) in this portion of the video image was 100% (i.e., $q=1$). To assure that all counted fishes/invertebrates were within the boundaries of the video strip transect, only those swept by the midline were included in our count. Observations were included if any portion of the fish/invertebrate was swept by the midline. Animals were identified to their lowest possible taxonomic classification. We made no attempt to count ronquils, poachers, eelpouts, small sculpins, and other miscellaneous small fishes; however, we attempted to enumerate all Rockfish regardless of size. The grouping "Little Bitty Guy" was used to distinguish small juvenile Rockfishes of unknown species and "Adult Rockfish" was used for unidentifiable adult Rockfish. Submersible survey estimates of fish density (number/hectare) were computed by dividing the number of fish counted by the area-swept estimated at each sample site (one transect per sample site). Diurnal changes in fish and invertebrate density was examined using an ANOVA. The ANOVA included the number of fish or invertebrates observed as a response variable and two predictor variables, transect ($8,9,10,11,12,13,14,15$) and sub- transect (A and B).

Results

Due to marginal weather conditions in coastal waters during the first three days of the survey, six alternative stations in Puget Sound near the San Juan Islands area were surveyed (Figure 7). Data were successfully gathered for five of the six transects with video recording devices failing during one transect (transect 4) that resulted in the loss of data. Weather conditions improved and a total of 12 transects (Figure 8) were completed in coastal waters on IPHC stations 1082 (transect 7), 1528 (transect segments 8C+8A+8B+8D), 1529 (transect 16), 1534 (transect 17), and 1533 (transect 17). Length of the coastal transects ranged between 0.4 and 2.2 kilometers in length and area swept estimates ranged from 0.04 Ha to 2.32 Ha for our longest transect (1082). The average over-ground speed of the ROV was 1.9-2.2 km per hour (Table 1). A total of eight repeat transects (transects 8-15) were completed on IPHC Rockfish station 1528. These transects were divided into northern "A" and southern "B" segments for analysis and are a sub-set of IPHC station 1528.

We made over 2,300 fish observations of 36 species or species groups, fifteen of which were Rockfish (Table 2). Rockfish were encountered most frequently and found in highest density on most transects relative to other fish species (Table 3 and 4). Sea Urchins and feather stars were encountered most frequently and highest densities among all other invertebrates (Tables 5-7). The primary habitat found among transects was gravel with sand as secondary habitat (Table 8).

In total, we were able to conduct five transects on IPHC station 1528 between 2:00 pm to 10 pm and three transects between 7 am to 11 am . In this time period, we observed eight different species of Rockfish, ten identifiable groundfish species, ten unidentified flat fish, 337 unidentified Rockfish (mostly small juveniles) and numerous invertebrate species. The variable "sub-transect" was significant ($\mathrm{P}=0.02$) for Canary Rockfish, which may imply Canary Rockfish tend to be more localized such that density varies with habitat changes. Sub-transect was also significant for unidentified flatfish but sample size was very low. Sub-transects was not significant $(\mathrm{P}>0.17)$ for all other observed fish and invertebrates (Table 9).

Transect was a significant ($\mathrm{P}<0.05$) variable for many species including Canary Rockfish, unidentified juvenile Rockfish, Rosethorn Rockfish, SSharpchin/SStripetail Rockfish, unidentified adult Rockfish, Dogfish shark, Rat fish, and Sea Urchins. This suggests that there may be diurnal effects on the relative survey abundance for these species (Table 9). For Canary, unidentified juvenile Rockfish, unidentified adult and rosethorn Rockfish, we found higher survey abundance during day light hours compared with nighttime (Figure 9-12). For SSharpchin/SStripetail Rockfish, we found highest abundance at dawn and dusk (Figure 13). Ratfish abundance was found to be increasing through afternoon hours and lower during daylight hours (Figures 14). Sea Urchin abundance decreased dramatically following sunset (Figure 15). Results for both sea stars and Sea Cucumbers was marginally significant ($0.05<\mathrm{P}<0.1$) with both species having higher abundance during day light hours compared with night time (Figure 1617). Although transect effect was significant for dogfish shark and marginally significant ($0.05<\mathrm{P}<0.1$) for eel pout, the low number of observations for these two species was too small to draw any conclusion. Yelloweye Rockfish, Tiger Rockfish, Yellowtail Rockfish, Lingcod, sculpin and unidentified flatfish abundance was variable and without apparent diurnal pattern (Figure 18-22). Diurnal changes in abundance for
the remaining fish and invertebrate species were not significant ($\mathrm{P}>0.20$) and showed little pattern (Figure 23-24). Due to poor weather, we were unable to fully complete all the planned survey sites for this experiment and therefore results are somewhat tentative.

A noteworthy fish behavior observation was made during transect 14 on IPHC station 1528. A Lingcod was seen attacking a Yelloweye when two other Yelloweye appeared and were observed defending the smaller individual being attacked. There have been no prior observations of social defensive behavior although many other Rockfish species school to provide defense against predators. This species is thought to be sedentary with small well defined ranges and this observation does not fit this assumption. The great depths inhabited by these species makes it extremely challenging to study the behavior of this and other deeper dwelling species, so little is known about behavior.

Discussion

The ROV and IPHC surveys are designed to target specific species and fish sizes. The IPHC survey is designed to target halibut with large baited circle hooks and also catches any other large, bottom dwelling, piscivorous species. The ROV survey approach is most useful for sampling demersal fish that are not likely to be influenced by the approach of the submersible. These differences are reflected in the data where striking differences in species composition and total numbers of fish between surveys are clear. For example, the IPHC survey caught few if any Canary, Yellowtail, or rosethorn Rockfish because these species are relatively small and are not "selected" by the large baited hooks whereas these species were relatively common in the ROV survey (Table 10). Yelloweye Rockfish, on the other hand, were observed in low numbers in both ROV and IPHC survey. This species is "selected" by both surveys because it is a large, piscivorous, bottom dwelling species that is easily identifiable in video strip transects and captured by the IPHC survey. The IPHC Yelloweye catch was four times that observed during the ROV survey of the same transects taken two months apart suggesting that it may be a more efficient method for sampling Yelloweye Rockfish or that Yelloweye are moving from one favorable habitat to another. Differences could be attributed to a variety of reasons including, bait likely attracts fish from a much larger area than that observed in a narrow strip transect, different survey time period (July for IPHC and September for ROV), different time of day, influence of the submersible, spatial differences covering different habitat types between surveys etc.

Given results from this and previous studies near the current study site, Yelloweye density is very low making it difficult to achieve a large enough sample size to develop an unbiased population index. Yelloweye density estimated from this survey was only 3.00 (CV of 0.4 , number $/ 10^{3} \mathrm{~m}^{2}$). This compares to a 2002 estimate of Yelloweye density of 2.02 (CV of 0.2 , number $/ 10^{3} \mathrm{~m}^{2}$) derived from a submersible survey of untrawlable habitats located in a much broader area that covers our current study site (Wallace et al., in review). A 1999 study that compared densities of demersal fish in trawlable and untrawlable habitats, in a small study area near our current study site, observed no Yelloweye in the trawlable area and estimated Yelloweye density to be 10.7 (CV of, number $/ 10^{3} \mathrm{~m}^{2}$) in the untrawlable area (Jagielo et al. 2003). Yelloweye catch in the IPHC survey has not only been low compared to catch of other species, but it is also highly variable between years providing little information on population trends off Washington.

Another factor that may affect survey results is movement behavior. There have been several studies showing that several species of Rockfish exhibit strong diel vertical movement behaviors (Wilkins, 1986, Richards et al., 1991, Parker et al., 2007, Parker et al., 2008, Tolimieri et al., 2009). This behavior, especially if occurring nonrandomly, can strongly influence species availability to the bottom tending survey gear such as setline or video survey biasing biomass and/or density estimates. Others have previously expressed concern that diel behavior may significantly impact precision and/or bias survey biomass estimates (Olsen, 1990; Appenzeller and Leggett, 1992; Simmonds et al., 1992, Stanely et al., 1999 and Stanely et al., 2000). Results from this study support the argument that many Rockfish species exhibit diel vertical movement patterns that could directly affect their availability to bottom-tending survey methods.

Many Rockfish are habitat-specific in their distribution, including Yelloweye. In our survey, Yelloweye Rockfish were found to be most abundant (65\%) in boulder-dominated bottom habitat.

Previous surveys throughout the West Coast have noted similar associations of Yelloweye Rockfish with complex rocky habitats (Richards, 1986; Pearcy et al., 1989; Stein et al., 1992; O’Connell and Carlile, 1993; Murie et al., 1994; Yoklavich et al., 2000; Johnson et al., 2003). Observations made by ROVs and other submersibles in British Columbia and southeastern Alaska found greatest Yelloweye densities over boulder fields and broken rock (O’Connell and Carlile, 1993; Murie et al., 1994; Johnson et al., 2003) as well as in wall habitats (Richards, 1986). The density of Yelloweye Rockfish among different habitat types may be influenced by the occurrence of refuge spaces (O’Connell and Carlile, 1993; Johnson et al., 2003), which provide protection from predators and high prey density (Murie et al., 1994). Differential fishing pressure across habitat types may also contribute to the distribution of Yelloweye and other Rockfish species (Yoklavich et al., 2000; Johnson et al., 2003). Our observations of higher Yelloweye densities over complex rocky bottoms may be due to the greater number of microhabitat refugia and increased protection from fishing pressure provided by these habitats.

Visual survey methodology has a number of advantages and disadvantages for surveying Rockfish, which have been well chronicled elsewhere (Uzmann et al., 1977; Ralston et al., 1986; Butler et al., 1991; Adams et al.,1995; Starr et al., 1996; Cailliet et al., 1999, Jagielo et al., 2003). Some of the disadvantages include: 1) difficulties in fish identification, particularly for small fish or fish with cryptic coloration, 2) the potential for attraction or repulsion from the submersible, 3) variation in detection due to habitat type; for example, due to reduced visibility when the submersible maneuvered off bottom to avoid large boulders, or the failure to detect fish hiding behind boulders, and 4) the limitation of the technique to quantifying the density of benthic species found in close proximity to the bottom. The advantages of the technique include the ability to: 1) sample in habitats that are inaccessible to other survey methods, 2) observe in-situ fish behavior, and 3) observe the distribution of fish and fish-habitat associations on a fine scale, and 4) survey where additional mortality is not compatible with conservation for species and/or for species poorly sampled by trawl gear, such as Yelloweye Rockfish (Weinberg et al 2002).

Another downside of videotape sampling is the problem of obtaining unbiased measurements of fish from the image, particularly when the image of a fish to be measured is not oriented with the anterior-posterior axis perpendicular to the camera. Fish perpendicular to the camera reflect accurate values but, since the perspective of the optics distorts the images of non-perpendicular fish these estimates will be biased dependent upon axis to the camera. This problem is largely technical and development of 3D video survey methods will greatly improve our ability to correctly measure fish and obtain unbiased estimates of fish size.

This study has demonstrated that visual transect surveys could provide a unique no-take alternative method for estimating Rockfish biomass in habitats not accessible to conventional survey tools. However, setline surveys are currently a much more cost effective method for surveying several adult piscivorous Rockfish species such as Yelloweye Rockfish. Costs associated with this survey were at least five times more expensive than traditional setline survey methods. In the future, these costs could be substantially reduced by employing smaller vessels and crew than used in this survey. This approach has been demonstrated to be effective by WDFW which recently completed several small-vessel ROV surveys near the San Juan Islands in Puget Sound (Palsson et at., report in progress). It is unclear how effective this approach would be in coastal waters where weather is more extreme and survey depths are greater than 60 fathoms. If no take surveys are required, we should consider exploring less expensive ROV survey approaches and other no-take survey methods such as self-releasing pots.

In conclusion, it is clear that relatively large-scale no-take surveys are needed to assess bottomfish densities in habitats that are not accessible to trawl survey gear. The low density and patchy distribution of Yelloweye and many other Rockfish species must be taken into consideration for developing a meaningful abundance time series that will be responsive to changes in abundance and useful to population dynamics models. Further study among several study sites and habitats will be required to better inform development of survey methods and measure the degree of possible bias associated with diel movement behavior. Standardization is needed for any bottom tending survey gear such as video, setlines, pots or trawl. Because most groundfish species are habitat-specific in their distribution, careful survey design will be necessary to ensure precise and unbiased estimates of abundance. If direct observation surveys such as the present study were conducted on a routine basis, a time-series of Yelloweye Rockfish density data could be used to develop an index of the trend in abundance. Such an index would be valuable information to incorporate into a demographic model of the Yelloweye Rockfish population for stock assessment analysis.

Literature Cited

Adams, P.B., J.L. Butler, C.H. Baxter, T.E. Laidig, K.A. Dahlin, and W.W. Wakefield. 1995. Population estimates of Pacific coast groundfishes from video transects and swept-area trawls. Fish. Bull. 93:446-55.

Appenzeller, A. R., and W. C. Leggett. 1992. Bias in hydroacoustic estimates of fish abundance due to acoustic shadowing: evidence from day-night surveys of vertically migrating fish. Can. J. Fish. Aquat. Sci. 49:2179-2189.

Butler, J.L., W.W. Wakefield, P.B. Adams, B.H. Robison, and C.H. Baxter. 1991. Application of line transect methods to surveying demersal communities with ROV's and manned submersibles. Proceedings of the OCEANS 91 Conference; Honolulu, Hawaii, 1-3 October 1991, p. 689-696.

Cailliet, G.M., A.H. Andrews, W.W. Wakefield, G. Moreno, and K.L. Rhodes. Fish faunal and habitat analyses using trawls, camera sleds and submersibles in benthic deep-sea habitats off central California. Oceanologica Acta 22(6):579-592.

Greene, H.G., M.M. Yoklavich, R.M. Starr, V.M. O’Connell, W.W. Wakefield, D.E. Sullivan, J.E. McRea Jr., and G.M. Cailliet.1999. A classification scheme for deep seafloor habitats. Oceanologica Acta 22(6):663-678.

Jagielo, T.H., A. Hoffman, J. Tagart, and M. Zimmermann. 2003. Demersal groundfish densities in trawlable and untrawlable habitats off Washington: implications for estimation of the habitat bias in trawl surveys. Fish Bull. 101:545-565.

Johnson, S.W., M.L. Murphy, and D.J. Csepp.2003.Distribution, habitat, and behavior of Rockfishes, Sebastes spp., in nearshore waters of southeastern Alaska: observations from a remotely operated vehicle. Environmental Biology of Fishes 66:259-270.

Krieger, K.J. 1993. Distribution and abundance of Rockfish determined from a submersible and by bottom trawling. Fish. Bull. 91:87-96.

Love, M. S., M. M. Yoklavich, and L. Thorsteinson. 2002. The Rockfishes of the Northeast Pacific. University of California Press, Berkley

Murie, D.J., D.C. Parkyn, B.G. Clapp, and G.G. Krause. 1994. Observations on the distribution and activities of Rockfish, Sebastes spp., in Sannich Inlet, British Columbia, from the Pisces IV submersible. Fish. Bull. 92:313-323.

O'Connell, V.M. and D.W. Carlile.1993. Habitat-specific density of adult Yelloweye Rockfish Sebastes ruberrimus in the eastern Gulf of Alaska. Fish. Bull. 91:304-309.

Parker, S.J., J.T. Berkeley, D.R. Golden, D.R. Gunderson, J. Heifetz, M.A. Hixon, R. Larson, B.M. Leaman, M.S. Love, J.A. Musick, V.M. O’Connell, S. Ralston, H.J. Weeks, and M.M. Yoklavich. 2001. Management of Pacific Rockfish. Fisheries 25(3):22-30.

Parker SJ, Rankin PS, Olson JM, Hannah RW (2007) Movement patterns of black Rockfish (Sebastes melanops) in Oregon coastal waters. In: Heifetz J, DiCosimo J, Gharrett AJ, Love MS, O’Connell VM, Stanley RD (eds) Biology, assessment, and management of North Pacific Rockfishes. Alaska Sea Grant, University of Alaska, Fairbanks, AK, p 3957

Parker S.J., J. M. Olson, P. S. Rankin and J. S. Malvitch. 2008 Patterns in vertical movements of black Rockfish Sebastes melanops. Aquatic Biology Vol. 2: 57-65

Pearcy, W.G. et al. 1989. Submersible observations of deep reef fishes of Heceta Bank, Oregon. Fish Bull. 87:955-965.

Ralston, S., R.M. Gooding, and G.M. Ludwig.1986. An ecological survey and comparison of bottom fish resources assessments (submersible versus handline fishing) at Johnston Atoll. Fish. Bull. 84:141-155.

Richards, L. J.1986. Depth and habitat distributions of three species of Rockfish (Sebastes) inBritish Columbia: observations from the submersible PISCES IV. Envir. Biol. of Fishes. 17(1):13-21.

Simmonds, E. J., N. J. Williamson, F. Gerlotto, and A. Aglen. 1992. Acoustic survey design and analysis procedures: a comprehensive review of current practice. ICES Coop. Res. Rep. 187, 127 p.

Stanley, R.D., R. Kieser, B. M. Leaman and K. G. Cooke. 1999 Diel vertical migration by Yellowtail Rockfish, Sebastes flavidus, and its impact on acoustic biomass estimation. Fish. Bull. 97:320-331.

StanleyRD, Kieser R, Cooke KD, Surry AM, Mose B (2000) Estimation of a widow Rockfish (Sebastes entomelas) shoal off British Columbia, Canada, as a joint exercise between stock assessment staff and the fishing industry. ICES J Mar Sci 57:1035-1049

Starr, R.M., D.S. Fox, M.A. Hixon, B.N. Tissot, G.E. Johnson, and W.H. Barss. 1996. Comparison of submersible-survey and hydroacoustic-survey estimates of fish density on a rocky bank. Fish. Bull. 94:113-123.

Stein, D.L., B.N. Tissot, M.A. Hixon, and W. Barss. 1992.Fish-habitat associations on a deep reef at the edge of the Oregon continental shelf. Fish. Bull. 90:540-551.

Stewart, I.J., J. R. Wallace and C. McGilliard. 2009. Status of U.S. Yelloweye Rockfish resource in 2009. In Status of the Pacific Coast Groundfish Fishery through 2009, Stock Assessment and Fishery Evaluation: Stock Assessments and Rebuilding Analyses: Pacific Fishery Management Council. Portland, OR. 222 p.

Tolimieri, N., K. Andrews, G. Williams, S. Katz and P. S. Levin. 2009 Home range size and patterns of space use by Lingcod, copper Rockfish and quillback Rockfish in relation to diel and tidal cycles. Marine Ecology Progress Series. Vol. 380: 229-243

Uzmann, J.R., R.A. Cooper, R.B. Theroux, and R.L. Wigley. 1977. Synoptic comparison of three sampling techniques for estimating abundance and distribution of selected megafauna: submersible vs. camera sled vs. otter trawl. Marine Fisheries Review Paper 1273, 39(12):11-19.

Wallace, F. R., T.-S. Tsou, T. Jagielo, and Y. W. Cheng. 2006. Status of Yelloweye Rockfish off the U.S. west coast in 2006. In Status of the Pacific Coast Groundfish Fishery through 2005, Stock Assessment and Fishery Evaluation: Stock Assessments and Rebuilding Analyses: Volumes I-VII. Pacific Fishery Management Council. Portland, OR. 141 p.

Wilkins, M. E.1986. Development and evaluation of methodologies for assessing and monitoring the abundance of widow Rockfish, Sebastes entomelas. Fish. Bull. 84:287-310.

Weinberg, K.L. M.E. Wilkins, F.R. Shaw, and M. Zimmermann. 2002. The 2001 Pacific west coast bottom trawl survey of groundfish resources: estimates of distribution, abundance, and length and age composition. NOAA Technical Memorandum NMFS-AFSC-128. National Marine Fisheries Service. Alaska Fisheries Science Center. 140 p.

Yoklavich, M.M., H.G. Greene, G.M. Cailliet, D.E. Sullivan, R.N. Lea, and M.S. Love. 2000. Habitat associations of deep-water Rockfishes in a submarine canyons an example of a natural refuge. Fish. Bull. 98:625-641.

Tables and Figures

Table 1. Descriptive statistics for each transect.

		IPHC Station	Date	Start Time	End Time	Mean Transect Width (m)	StDev Transect Width (m)	CV Transect Width (m)	Distance (m)	Elapsed Time	$\begin{gathered} \text { Speed } \\ (\mathrm{km} / \mathrm{hr}) \end{gathered}$	Area Swept (Ha)
1			11-Sep-08	4:23:31 PM	4:54:25 PM	3.80	1.39	0.37	593.7	0:30:54	1.15	0.226
2			11-Sep-08	7:27:10 PM	7:40:32 PM	4.15	1.38	0.33	180.0	0:13:22	0.81	0.075
3			12-Sep-08	7:50:06 AM	8:09:09 AM	3.73	1.77	0.48	288.7	0:19:03	0.91	0.108
5			12-Sep-08	5:27:48 PM	5:32:54 PM	4.15	1.36	0.33	96.8	0:05:06	1.14	0.040
6			12-Sep-08	5:42:15 PM	5:58:10 PM	3.99	1.40	0.35	608.7	0:15:55	2.29	0.243
7		1082	14-Sep-08	8:47:00 AM	12:45:51 PM	6.13	2.16	0.35	3784.9	3:58:51	0.95	2.320
8	A	1528	14-Sep-08	2:00:28 PM	2:18:26 PM	5.40	2.66	0.49	490.2	0:17:58	1.64	0.265
8	B	1528	14-Sep-08	2:18:27 PM	2:35:09 PM	4.83	2.14	0.44	486.5	0:16:42	1.75	0.235
8	C	1528	14-Sep-08	1:43:28 PM	2:00:25 PM	2.91	0.96	0.33	394.8	0:16:57	1.40	0.115
8	D	1528	14-Sep-08	2:35:21 PM	2:58:55 PM	4.12	1.19	0.29	793.9	0:23:34	2.02	0.327
9	A	1528	14-Sep-08	5:22:50 PM	5:37:40 PM	4.43	1.76	0.4	433.3	0:14:50	1.75	0.192
9	B	1528	14-Sep-08	5:37:49 PM	5:52:38 PM	4.57	1.79	0.39	433.9	0:14:49	1.76	0.198
10	A	1528	14-Sep-08	7:36:06 PM	7:44:55 PM	3.98	1.62	0.41	284.5	0:08:49	1.94	0.113
10	B	1528	14-Sep-08	7:44:56 PM	7:57:25 PM	5.17	1.85	0.36	345.9	0:12:29	1.66	0.179
11	A	1528	14-Sep-08	8:37:29 PM	8:49:56 PM	4.87	1.96	0.4	418.7	0:12:27	2.02	0.204
11	B	1528	14-Sep-08	8:50:02 PM	9:03:27 PM	5.01	1.45	0.29	404.5	0:13:25	1.81	0.202
12	A	1528	14-Sep-08	9:34:46 PM	9:52:06 PM	6.30	1.70	0.27	451.1	0:17:20	1.56	0.284
12	B	1528	14-Sep-08	9:52:22 PM	10:04:37 PM	4.57	1.35	0.29	377.8	0:12:15	1.85	0.173
13	A	1528	15-Sep-08	7:24:20 AM	7:44:38 AM	2.95	0.89	0.3	407.6	0:20:18	1.20	0.120
13	B	1528	15-Sep-08	7:44:51 AM	8:04:56 AM	2.95	1.07	0.36	462.7	0:20:05	1.38	0.137
14	A	1528	15-Sep-08	8:40:20 AM	9:01:24 AM	2.96	0.60	0.2	458.6	0:21:04	1.31	0.136
14	B	1528	15-Sep-08	9:01:45 AM	9:25:45 AM	3.11	1.23	0.4	643.4	0:24:00	1.61	0.200
15	A	1528	15-Sep-08	10:11:28 AM	10:33:02 AM	3.42	1.56	0.45	560.9	0:21:34	1.56	0.192
15	B	1528	15-Sep-08	10:33:24 AM	10:48:19 AM	3.59	1.43	0.4	374.4	0:14:55	1.51	0.134
16		1529	15-Sep-08	6:31:54 PM	7:31:44 PM	3.02	0.74	0.25	2300.1	0:59:50	2.31	0.696
17		1534	16-Sep-08	9:22:32 AM	10:32:29 AM	2.98	1.49	0.5	2192.7	1:09:57	1.88	0.653
18		1533	16-Sep-08	1:24:41 PM	2:29:27 PM	2.61	0.39	0.15	2209.9	1:04:46	2.05	0.577
Total												8.342

Table 2. Numbers of fish observed by species or species group in each transect.

Table 3. Percent of total number of observations by groundfish species or species group observed in each transect.

													Trans														
Species	1	2	3	5	6	7	8 A	8B	8C	8D	9A	9B	10A	10B	11A	11B	12A	12B	13A	13B	14A	14B	15A	15B	16	17	18
Flatfish																											
Arrowtooth Flounder																										45\%	
Dover Sole													2\%						1\%						18\%		
Pacific Halibut						1\%											2\%							1\%			3\%
Petrale Sole																									0\%		
Rock Sole									5\%																		
Unidentified Flatfish						2\%	3\%		15\%		2\%		2\%			1\%	4\%		1\%				1\%		8\%	3\%	
Sub-total						3\%	3\%		20\%		2\%		4\%			1\%	7\%		2\%				1\%	1\%	27\%	47\%	3\%
Rockfish																											
Yelloweye						1\%					1\%			4\%		6\%	2\%				2\%	1\%	1\%	1\%	0\%		
Black																										1\%	
Canary						27\%	35\%	16\%		50\%	14\%	7\%	9\%	7\%	1\%	1\%	15\%	4\%	1\%	2\%	4\%		4\%	5\%	23\%		3\%
Green Stripped													2\%		1\%												
Greenspotted						0\%																					
Unidentified Juvenile		33\%				57\%	13\%	19\%	55\%	31\%	27\%	18\%	5\%	7\%	49\%	27\%		4\%	48\%	33\%	4\%	7\%	24\%	6\%	20\%	12\%	53\%
Quillback	9\%																										
Redstripe							1\%																				
Rosethorn						1\%	18\%	10\%	10\%	3\%	16\%	20\%	14\%	28\%	16\%	13\%	2\%		19\%	25\%	18\%	10\%	5\%	5\%	6\%	1\%	19\%
Sharpchin																			2\%	5\%						5\%	
Silvergrey														2\%							2\%						
Striptail or Sharpch						1\%											11\%	33%	6\%	2\%						1\%	
Tiger								5\%				1\%	2\%	2\%	3\%	9\%	4\%		2\%		2\%	1\%		2\%	1\%		3\%
Unidentified Adult	9\%				100\%	5\%	18\%	32\%		6\%	37\%	32\%	14\%	17\%	4\%	6\%			17\%	25\%	63\%	74\%	63\%	73\%	13\%	5\%	3\%
Widow Rockfish Yellowtail Rockfish						0\%		2\%				17\%	32\%	9\%			7\%					3\%			0\%	4\%	
Sub-total	18\%	33\%			100\%	92\%	85\%	84\%	65\%	90\%	94\%	95\%	77\%	76\%	74\%	63\%	41\%	42\%	94\%	93\%	97\%	96\%	96\%	93\%	63\%	29\%	81\%
Sharks and Skates																											
Big Skate						0\%																					
Dogfish Shark															1\%	1\%					1\%				2\%	19\%	
Long Nose Skate						0\%										1\%					1\%						
Rat Fish	82\%	67\%	100\%			0\%		2\%		2\%	2\%		14\%	22\%	21\%	30\%	46\%	46\%	1\%				1\%	3\%	1\%		3\%
Sandpaper Skate																									0\%		
Sub-total	82\%	67\%	100\%			0\%		2\%		2\%	2\%		14\%	22\%	22\%	33\%	46\%	46\%	1\%		2\%		1\%	3\%	4\%	19\%	3\%
Misc species																											
Eel pout or gunnel						0\%				3\%	1\%	2\%			3\%	1\%				2\%				1\%			
Greenling										2\%												1\%					
Lingcod						4\%	1\%	11\%		2\%	1\%	2\%	2\%	2\%	1\%	1\%	7\%	13\%		4\%			1\%	1\%	0\%	1\%	14\%
poacher						0\%					1\%								2\%								
Pollock						0\%						1\%															
Sculpin						0\%	8\%	3\%	5\%	2\%			4\%						2\%	2\%	1\%	3\%	2\%	1\%	6\%	1\%	
Unidentified Sculpin						0\%	4\%		10\%																	1\%	
Sub-total						5\%	13\%	15\%	15\%	8\%	3\%	5\%	5\%	2\%	4\%	3\%	7\%	13\%	3\%	7\%	1\%	4\%	3\%	3\%	6\%	4\%	14\%
Total	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%

Table 4. Density of fish (\#'s/Ha) by species or species group observed in each transect.

														ransec													
Species	1	2	3	5	6	7	8A	8B	8C	8D	9A	9B	10A	10B	11A	11B	12A	12B	13A	13B	14A	14B	15A	15B	16	17	18
Flatfish																											
Arrowtooth Flounder																										54	
Dover Sole													9						8						53		
Pacific Halibut						3											4							7			2
Petrale Sole																									1		
Rock Sole									9																		
Unidentified Flatfish						6	8		26		10		9			5	7		8				5		24	3	
Flatfish per Ha						9	8		35		10		18			5	11		17				5	7	79	57	2
Rockfish																											
Yelloweye						4					5			11		20	4				15	5	5	7	1		
Black																										2	
Canary						101	102	43		95	83	35	44	17	5	5	25	6	8	7	30		42	37	68		2
Green Stripped													9		5												
Greenspotted						0																					
Unidentified Juvenile		27				211	38	51	96	58	161	96	27	17	186	89		6	474	132	30	55	245	45	59	14	33
Quillback	4																										
Redstripe							4																				
Rosethorn						2	53	26	17	6	94	106	71	73	59	44	4		183	103	125	80	52	37	19	2	12
Sharpchin																			17	22						6	
Silvergrey														6							15						
Striptail or Sharpchin						3											18	46	58	7						2	
Tiger								13				5	9	6	10	30	7		17		15	5		15	3		2
Unidentified Adult	4				4	18	53	85		12	224	166	71	45	15	20			166	103	435	581	656	536	37	6	2
Widow Rockfish																											
Yellowtail Rockfish						1		4				91	159	22			11					20			1	5	
Rockfish per Ha	9	27			4	341	249	221	113	171	568	499	389	196	279	207	67	58	923	374	664	746	1000	678	188	35	50
Sharks and Skates																											
Big Skate						0																					
Dogfish Shark															5	5					7				7	23	
Long Nose Skate						0										5					7						
Rat Fish	40	53	93			0		4		3	10		71	56	78	99	74	64	8				5	22	3		2
Sandpaper Skate																									1		
Sharks\&Skate per Ha	40	53	93			1		4		3	10		71	56	83	109	74	64	8		15	0	5	22	12	23	2
Misc species																											
Eel pout or gunnel						0				6	5	10			10	5				7				7			
Greenling										3												10					
Lingcod						16	4	30		3	5	10	9	6	5	5	11	17		15			10	7	1	2	9
poacher						1					5								17								
Pollock						0						5															
Sculpin						1	23	9	9	3			18						17	7	7	25	16	7	17	2	
Unidentified Sculpin						1	11		17																	2	
Misc spp. Per Ha						19	38	38	26	15	16	25	27	6	15	10	11	17	33	29	7	35	26	22	19	5	9
Total Num. Per Ha	49	27	44	0	4	3809	345	275	89	275	514	461	252	204	341	297	204	106	523	244	412	691	881	434	917	345	159

Table 5. Number of invertebrates observed by species or species group in each transect.

Table 6. Percent of total invertebrates observed by species or species group in each transect.

	Transect																										
Species	1	2	3	5	6	7	8A	8B	8C	8D	9A	9B	10A	10B	11A	11B	12A	12B	13A	13B	14A	14B	15A	15B	16	17	18
BatStar	1\%		1\%																								
BloodStar						0\%						0\%															
Brittle Star	2\%		13\%						4\%																		
Cookie star						0\%												0\%	0\%								
Coralspp	4\%	7\%		3\%	3\%	0\%																					
Crab			12\%			1\%																				0\%	
Feather Star						25\%	23\%	26\%	7\%	4\%	29\%	27\%	20\%	14\%	13\%	8\%	48\%	62\%	55\%	67\%	34\%	33\%	58\%	31\%	53\%		
Giant Plumose Anemone						1\%																					
Gorgonian	1\%																										2\%
Gunpowder Star						0\%																					
Octopus						0\%																					
Sea Anemone	51\%	13\%	29\%	3\%	14\%	3\%			2\%	0\%		0\%		0\%	0\%	0\%	1\%	2\%			0\%				0\%	5\%	24\%
Sea Cucumber	11\%	13\%	1\%	46\%	19\%	41\%	28\%	11%	35\%	28\%	20\%	12\%	19\%	15\%	14\%	15\%	43\%	28\%	17\%	16\%	15\%	16\%	21\%	15\%	6\%	0\%	0\%
Sea Kelp	3\%		4\%	6\%	6\%	1\%																				0\%	0\%
Sea Pen		7\%																									
SeaStar	24\%	47\%	14\%	37\%	55\%	23\%	6\%	5\%	46\%	24\%	8\%	9\%	13\%	13\%	16\%	18\%	8\%	7\%	9\%	16\%	10\%	10\%	4\%	20\%	18\%	87\%	6\%
Sea Urchin		7\%		3\%	1\%	0\%	42\%	58\%		42\%	43\%	51\%	47\%	58\%	57\%	58\%			18\%		40\%	41\%	14\%	33\%	0\%		0\%
SeaWhip						0\%																					
Slime Star												0\%	0\%		0\%	0\%											
Sponge														0\%		0\%			1\%		1\%		1\%	0\%	20\%	3\%	55\%
SunStar	3\%		26\%	3\%	1\%	4\%	0\%	0\%	4\%	1\%		0\%		0\%	0\%	0\%		0\%	0\%				0\%		0\%	4\%	11\%
Sunflower Star						0\%	0\%									0\%								0\%	0\%		
Vermilion Star																									1\%		
White Branching Hydrocoral						1\%																					
Wrinkle Star									2\%			0\%											1\%				
Unknown Invertibrate	3\%	7\%				0\%																0\%	0\%	0\%		0\%	
Derelict Fishing gear						0\%				0\%											0\%						
Total	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table 7. Density of invertebrates observed by species or species group in each transect.

Table 8. Percent habitat type observed in each transect.

Cobble c										11\%					17\%	10\%	1\%	2\%	0\%
Cobble s										3\%	18\%	14\%	7\%	3\%	5\%		2\%		
Gravel c			12\%	3\%	2\%	5\%	26\%	23\%	12\%	1\%		2\%	2\%		2\%	19\%	15\%	7\%	0\%
Gravel s	0\%	8\%	20\%	7\%	9\%	14\%	16\%	4\%	16\%	16\%	4\%	2\%	9\%		0\%	26\%	0\%	27\%	
Mud c																			1\%
Mud s															3\%				1\%
Pebble c		0\%	0\%				0\%	2\%		13\%									
Pebble s	0\%	5\%					0\%	3\%		1\%									
Sand																			5\%
Sand c	1\%											3\%							1\%
Sand s	5\%	2\%										3\%	0\%		2\%		34\%		1\%

Note: $\mathrm{c}=$ Continuous and $\mathrm{s}=$ Stacked and values are rounded to whole numbers

Table 9. Summary of the analysis of variance results.

Aquatic animal	Common name	$\operatorname{Pr}(\mathrm{F})$	
		Transect (levels=8,9,10,11,12,13,14,15)	Subtransect (levels=A, B)
Fin fish	Yelloweye Rockfish	0.72	0.57
	Canary Rockfish	0.01	0.02
	dogfish shark	0.03	0.35
	dover sole	0.50	0.17
	halibut	0.64	1.00
	Lingcod	0.31	0.23
	unidentified juvenile	0.01	0.42
	longnose skate	0.64	1.00
	pollock	0.50	0.35
	rat fish	0.01	0.75
	redstripe	0.50	0.35
	rosethorn	0.01	0.83
	Sharpchin	0.04	0.68
	sculpin	0.32	0.86
	silvergrey Rockfish	0.62	0.68
	Tiger Rockfish	0.54	0.46
	Yellowtail Rockfish	0.34	0.95
	eel pout	0.06	0.35
	poacher	0.50	0.20
	unidentified flatfish	0.85	0.03
	unidentified Rockfish	0.00	0.67
Echinoidea	feather stars	0.36	0.41
	sea stars	0.09	0.21
	Sea Cucumbers	0.07	0.89
	Sea Urchins	0.00	0.21

Table 10. Comparison of the number of fish observed by species and the 2008 to 2009 IPHC survey catch by station.

2008 ROV Survey	IPHC Station Number					
Species	1082	1528	1529	1533	1534	Total
Boccacio						0
Canary	235	68	47		1	351
Rosethorn	5	24	13	1	7	50
Yelloweye	9		1			10
Yellowtail	2	1	1	3		7
Grand Total	251	93	62	4	8	418

2008 IPHC Survey

Species	1082	1528	1529	1533	1534	Total
Boccacio	1	1	1	1		4
Canary	2					2
Rosethorn	5	22	11	1	4	43
Yelloweye						0
Yellowtail	8	23	12	2	4	49

2009 IPHC Survey						
Species	1082	1528	1529	1533	1534	Total
Boccacio	1		1			1
Canary						2
Rosethorn	10	26	10	1	6	53
Yelloweye Yellowtail						0
Grand Total	11	27	11	1	7	57

Figure 1. Location of the 2008 groundfish ROV survey sites.

Figure 2. Stanford Research work class ROV and umbilical(far right) on deck of the R/V Centennial. Max SMX1000 ROV with Mobile Inspection Package

Figure 3. Doppler Velocity Logger (left) and 3-beam menstruation system (right).

Figure 4. Mobile Inspection Package sensor suite

Figure 5. ROV on the deck of the R/V Centennial (left), ROV control center, data accusation and processing.

Figure 6. Location of IPHC Rockfish stations sampled between 2007 and 2009 off of Cape Flattery Washington.

Figure 7. Transect locations near San Juan Islands in Puget Sound.

Figure 8. Transect locations (dark lines) on "The Prairie, 40 kilometers" WSW of Cape Flattery Washington.

Figure 9. Plot of diurnal changes in Canary Rockfish densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 10. Plot of diurnal changes in juvenile Rockfish (Little bitty guy) densities between two ROV sub- transects (A and B) within the $\mathbf{2 4}$ hours

Figure 11. Plot of diurnal changes in rosethorn Rockfish densities between two ROV sub- transects (A and B) within the $\mathbf{2 4}$ hours.

Figure 12. Plot of diurnal changes for unidentified adult Rockfish densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 13. Plot of diurnal changes for Stripetail/Sharpchin Rockfish densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 14. Plot of diurnal changes for dogfish shark densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 15. Plot of diurnal changes for Sea Urchin densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 16. Plot of diurnal changes in Sea Cucumber densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 17. Plot of diurnal changes in sea star densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 18. Plot of diurnal changes for Yelloweye Rockfish densities between two ROV sub- transects (A and B) within the $\mathbf{2 4}$ hours.

Figure 19. Plot of diurnal changes for Tiger Rockfish densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 20. Plot of diurnal changes for Yellowtail Rockfish densities between two ROV sub- transects (A and B) within the $\mathbf{2 4}$ hours.

Figure 21. Plot of diurnal changes for Lingcod densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 22. Plot of diurnal changes in sculpin densities between two ROV sub- transects (A and B) within the 24 hours.

Figure 23. Plot of diurnal changes for unidentified flatfish densities between two ROV sub- transects (A and B) within the $\mathbf{2 4}$ hours

Figure 24. Plot of diurnal changes in feather star densities between two ROV sub- transects (A and B) within the 24 hours.

This program receives Federal financial assistance from the U.S. Fish and Wildlife Service Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. The U.S. Department of the Interior and its bureaus prohibit discrimination on the bases of race, color, national origin, age, disability and sex (in educational programs). If you believe that you have been discriminated against in any program, activity or facility, please contact the WDFW ADA Program Manager at P.O. Box 43139, Olympia, Washington 98504, or write to

Department of the Interior
Chief, Public Civil Rights Division
1849 C Street NW
Washington D.C. 20240

[^0]: ${ }^{1}$ Canary Rockfish were declared rebuilt in 2015 and Bocaccio in 2017.

[^1]: ${ }^{2}$ Canary Rockfish was declared rebuilt in 2015 and Bocaccio Rockfish in 2017.

